ultralytics-YOLOv11的目标检测解析

1. Python的调用

from ultralytics import YOLO
import os
def detect_predict():model = YOLO('../weights/yolo11n.pt')print(model)results = model('../ultralytics/assets/bus.jpg')if not os.path.exists(results[0].save_dir):os.makedirs(results[0].save_dir)for result in results:filename = result.path.split("\\")[-1]filedir = result.save_dir + "\\" + filenameresult.save(filedir)

运行结果:

模型训练,基于coco8数据:

from ultralytics import YOLO
def detect_train():model = YOLO("yolo11l.pt")  # Load a modeltrain_results = model.train(   # Train the modeldata="coco8.yaml",  # path to dataset YAMLepochs=100,  # number of training epochsimgsz=640,  # training image sizedevice="0",  # device to run on, i.e. device=0 or device=0,1,2,3 or device=cpu)metrics = model.val()  # Evaluate model performance on the validation setresults = model("../ultralytics/assets/bus.jpg")  # Perform object detection on an imageresults[0].show()# Export the model to ONNX formatpath = model.export(format="onnx")  # return path to exported model

2. 网络结构图

图2-1 yolo11-detection网络结构图

其中depth参数控制C3k2,即C3k2_X中,X*depth.

3. 损失函数

3.1 损失函数的定位

ultralytics中损失函数定位:ultralytics.engine.train()-->ultralytics.engine.trainer.train()--> ultralytics.engine.trainer._do_train(),其中以下为调用损失位置:

即模型的前向推理过程触发损失函数计算。同debug到该处,获取模型名称如下:

DetectionModel类中的函数如下:

其中DetectionModel函数继承自BaseModel,损失调用如下

经debug调用self.loss函数,其中ultralytics.utls.loss.v8DetectionLoss函数是具体损失计算位置

self.criterion(preds, batch)形式调用,即v8DetectionLoss类中的__call__函数,具体如下

3.2 损失函数具体分析

(1) 前向推理与anchor构造

前向处理分成三个尺度: ,其中B表示batch_size,

。通过debug模式三个尺度生成的list如下:

需要把三个尺度分成预测类别(80个类别)和检测框,其中 ,具体如下:

以三个尺度构造anchor,其中以每个方格中心点作为anchor_point,三个尺度总共有8400个anchor_point,如图3-1所示。通过debug获取全部anchor_points与anchor_points对应的stride_tensor,如下:

图3-1 anchor_point的构造

(2) GT目标框与预测框构建

GT目标框的构建,包括batch_idx,cls,bboxes,得到 ,其中n表示batch中的标注的目标框数量,6=1+4+1。

 self.preprocess函数的作用是输出 ,构建B个 的矩阵,其中 表示B个图像中标注框最大的数量,不足最大数量的行设置为全0,5表示cls+bbox

预测框的构建主要是函数bbox_decode,即对前向推理的pred_distri根据anchor_points对pred_distri做解码操作。解码时,pred_distri由 变为 ,具体是16个预测值做softmax后与[0,1,2,…,15]做矩阵乘法,如下 

然后pred_dist得到的是左上角、右下角距离每个anchor_point中心点的距离,通过dist2bbox转换为xyxy形式的坐标,如下所示。anchor_points为中心点的坐标,最后得到预测bboxes。 

 (3) 任务分配器

任务分配器即ultralytics.utils.tal.TaskAlignedAssigner类,主要实现以该类的forward函数。其中主要的函数为get_pos_mask、select_highest_overlaps、get_targets。

get_pos_mask:获取anchor预测真实框的mask

def get_pos_mask(self, pd_scores, pd_bboxes, gt_labels, gt_bboxes, anc_points, mask_gt):"""Get in_gts mask, (b, max_num_obj, h*w)."""mask_in_gts = self.select_candidates_in_gts(anc_points, gt_bboxes)  # mask_in_gts:4x7x8400# Get anchor_align metric, (b, max_num_obj, h*w)align_metric, overlaps = self.get_box_metrics(pd_scores, pd_bboxes, gt_labels, gt_bboxes, mask_in_gts * mask_gt)# Get topk_metric mask, (b, max_num_obj, h*w)mask_topk = self.select_topk_candidates(align_metric, topk_mask=mask_gt.expand(-1, -1, self.topk).bool())# Merge all mask to a final mask, (b, max_num_obj, h*w)mask_pos = mask_topk * mask_in_gts * mask_gtreturn mask_pos, align_metric, overlaps

select_candidates_in_gts函数的主要作用是根据真实框lr、br距离anchor_point的距离筛选anchor_points。其中筛选的条件是四个距离值大于1e-9,如图3-2所示。该函数输出如下:

其中mask_in_gts表示0或1的矩阵。

 图3-2 有效anchor_point的筛选

get_box_metrics主要是计算预测框与一个batch的GT框的CIOU,以及一个batch的GT类别位置处预测score,通过这两个计算得到align_metric。其中该函数的mask_gt的计算由select_candidates_in_gts获取的mask_in_gts与一个batch的mask_gt相乘得到,mask_in_gts: ,mask_gt: 。然后得到新的mask_gt: ,如下所示,后续的score与box框的筛选都通过新mask_gt获取。

构造batch_idx与cls_idx,如下 

根据构造的idx从pd_scores中获取mask_gt相应位置值,然后赋值给bbox_scores,mask_gt的其余部分为0,如下 

 分别扩展pd_bboxes、gt_bboxes,使其两则维度相同,然后通过新mask_gt筛选预测框与真实框,通过CIOU计算overlaps,如下

最后计算align_metric,计算公式如下

alpha=0.5,beta=6.0。

 select_topk_candidates由align_metric筛选top10候选mask_topk。其中该函数的输入topk_mask由mask_gt: 复制topk中的k=10份得到topk_mask: 。筛选align_metric中top10的值与idx,如下

 其中topk_idxs的值域为[0,8400),topk_metrics,topk_idxs,topk_mask尺寸都为 。返回mask_topk的尺寸为

 最后merge所有的mask返回为mask_pos,其中mask_topk、mask_in_gts大小为 ,mask_gt大小为 ,具体代码如下

select_highest_overlaps:当一个anchor分配多个检测框时,选择overlap最大的

def select_highest_overlaps(mask_pos, overlaps, n_max_boxes):"""Select anchor boxes with highest IoU when assigned to multiple ground truths."""# Convert (b, n_max_boxes, h*w) -> (b, h*w)fg_mask = mask_pos.sum(-2)if fg_mask.max() > 1:  # one anchor is assigned to multiple gt_bboxesmask_multi_gts = (fg_mask.unsqueeze(1) > 1).expand(-1, n_max_boxes, -1)  # (b, n_max_boxes, h*w)max_overlaps_idx = overlaps.argmax(1)  # (b, h*w)is_max_overlaps = torch.zeros(mask_pos.shape, dtype=mask_pos.dtype, device=mask_pos.device)is_max_overlaps.scatter_(1, max_overlaps_idx.unsqueeze(1), 1)mask_pos = torch.where(mask_multi_gts, is_max_overlaps, mask_pos).float()  # (b, n_max_boxes, h*w)fg_mask = mask_pos.sum(-2)# Find each grid serve which gt(index)target_gt_idx = mask_pos.argmax(-2)  # (b, h*w)return target_gt_idx, fg_mask, mask_pos

mask_pos: ,overlap: ,mask_multi_gts获取一个anchor预测多个gt框的位置,max_overlaps_idx每个anchor中overlap值最大的位置获取,通过torch.where更新mask_pos,即一个anchor分配多个框时,选择overlap最大GT,分配到该anchor上。最后返回fg_mask(anchor中分配GT框的mask)、target_gt_idx(anchor中分配GT框的idx)、

尺寸大小的mask_pos。

get_targets

def get_targets(self, gt_labels, gt_bboxes, target_gt_idx, fg_mask):# Assigned target labels, (b, 1)batch_ind = torch.arange(end=self.bs, dtype=torch.int64, device=gt_labels.device)[..., None]target_gt_idx = target_gt_idx + batch_ind * self.n_max_boxes  # (b, h*w)target_labels = gt_labels.long().flatten()[target_gt_idx]  # (b, h*w)  # 获取anchor分配GT框的类别# Assigned target boxes, (b, max_num_obj, 4) -> (b, h*w, 4)target_bboxes = gt_bboxes.view(-1, gt_bboxes.shape[-1])[target_gt_idx]  # 获取anchor分配GT框的坐标bbox# Assigned target scorestarget_labels.clamp_(0)# 10x faster than F.one_hot()target_scores = torch.zeros((target_labels.shape[0], target_labels.shape[1], self.num_classes),dtype=torch.int64,device=target_labels.device,)  # (b, h*w, 80)target_scores.scatter_(2, target_labels.unsqueeze(-1), 1)fg_scores_mask = fg_mask[:, :, None].repeat(1, 1, self.num_classes)  # (b, h*w, 80)target_scores = torch.where(fg_scores_mask > 0, target_scores, 0)  # 通过fg_scores_mask限制target_scoresreturn target_labels, target_bboxes, target_scores

 target_gt_idx是[0,n_max_boxes-1]的值,更新索引值,不同batch_idx索引唯一,如下

构造one-hot的target_scores,每个anchor都是one-hot,长度为80,如下

最后返回 的target_labels, 的target_bboxes, 大小one-hot的target_scores。

任务分配器最后步骤是做归一化处理,如下所示。

# Normalize
align_metric *= mask_pos
pos_align_metrics = align_metric.amax(dim=-1, keepdim=True)  # b, max_num_obj
pos_overlaps = (overlaps * mask_pos).amax(dim=-1, keepdim=True)  # b, max_num_obj
# align_metric/pos_align_metrics值域[0,1],尺寸为b, max_num_obj, 8400
norm_align_metric = (align_metric * pos_overlaps / (pos_align_metrics + self.eps)).amax(-2).unsqueeze(-1) #b,8400,1
target_scores = target_scores * norm_align_metric  # [b,8400,80] * [b,8400,1]

最终TaskAlignedAssigner返回五个参数,如下

 (4) 损失计算

Cls loss通过BCE计算,pred_scores与target_scores的尺寸为 ,其中BCE的计算公式如下:

Box loss计算loss_iou与loss_dfl,具体的计算如下

# Bbox loss
if fg_mask.sum():target_bboxes /= stride_tensor  # [b,8400,4] / [8400,1]loss[0], loss[2] = self.bbox_loss(  # 计算loss_iou, loss_dflpred_distri, pred_bboxes, anchor_points, target_bboxes, target_scores, target_scores_sum, fg_mask)
loss[0] *= self.hyp.box  # box gain = 7.5
loss[1] *= self.hyp.cls  # cls gain = 0.5
loss[2] *= self.hyp.dfl  # dfl gain = 1.5
return loss.sum() * batch_size, loss.detach()  # loss(box, cls, dfl)

 bbox_loss中的计算代码如下,其中包括loss_iou与loss_dfl两部分。

weight = target_scores.sum(-1)[fg_mask].unsqueeze(-1)  # 计算权重,target_scores:b,8400,80, fg_mask:b,8400
iou = bbox_iou(pred_bboxes[fg_mask], target_bboxes[fg_mask], xywh=False, CIoU=True)  # 在fg_mask下,计算真实框与预测框CIoU
loss_iou = ((1.0 - iou) * weight).sum() / target_scores_sum  # iou损失计算# DFL loss
if self.dfl_loss:target_ltrb = bbox2dist(anchor_points, target_bboxes, self.dfl_loss.reg_max - 1)  # box转换成距中心点距离
# pred_dist[fg_mask]:210x64-->840x16loss_dfl = self.dfl_loss(pred_dist[fg_mask].view(-1, self.dfl_loss.reg_max), target_ltrb[fg_mask]) * weightloss_dfl = loss_dfl.sum() / target_scores_sum  # 与iou损失一样,除以target_scores_sum
else:loss_dfl = torch.tensor(0.0).to(pred_dist.device)return loss_iou, loss_dfl

然后DFLoss如下,主要是对预测距离与真实距离做交叉熵,并加权平均计算值。其中左右权重的计算遵循距离值越大,权重就越小的原则。

target = target.clamp_(0, self.reg_max - 1 - 0.01)  # n, 4
tl = target.long()  # target left 真实框向左取整
tr = tl + 1  # target right  真实框向右取整
wl = tr - target  # weight left  向右取整-目标得到左边的权重
wr = 1 - wl  # weight right  向左取整-目标得到右边的权重
return (  # 左右预测距离与真实距离做交叉熵计算,并乘以权重F.cross_entropy(pred_dist, tl.view(-1), reduction="none").view(tl.shape) * wl+ F.cross_entropy(pred_dist, tr.view(-1), reduction="none").view(tl.shape) * wr
).mean(-1, keepdim=True)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/483493.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

蓝桥杯准备训练(lesson1,c++方向)

前言 报名参加了蓝桥杯(c)方向的宝子们,今天我将与大家一起努力参赛,后序会与大家分享我的学习情况,我将从最基础的内容开始学习,带大家打好基础,在每节课后都会有练习题,刚开始的练…

vscode 如何支持点击跳转函数,以C++为例,Python等其它编程语言同理,Visual Studio Code。

VScode(Visual Studio Code)按住Ctrl鼠标左键,没法跳转到对应的函数怎么办。 如下图所示 1、点击有四个小方块的图标 2、输入C(如果你的编程语言是C,其它的就输其它的) 3、找到C Extension(其它编程语言&#xff0…

【包教包会】CocosCreator3.x——重写Sprite,圆角、3D翻转、纹理循环、可合批调色板、不影响子节点的位移旋转缩放透明度

一、效果演示 重写Sprite组件,做了以下优化: 1、新增自变换,在不影响子节点的前提下位移、旋转、缩放、改变透明度 新增可合批调色板,支持色相、明暗调节 新增圆角矩形、3D透视旋转、纹理循环 所有功能均支持合批、原生平台&…

Java八股文(11-29start)

p1 缓存预热也要预热到布隆过滤器.过滤不存在的数据 布隆过滤器需要存储 添加数据的时候进行预热.布隆过滤器里面是位图结构,通过多个hash函数获得下标.改为1. 查询 id进行查询获得对应下标是否为1.可能会出现误判. 判断id是否存在. 穿透就是查询一个不存在的id.一直查询数…

【Gitlab】gitrunner并发配置

并发介绍 涉及到并发控制的一共有4个参数: concurrent , limit ,request_concurrency,parallel 全局的配置: [rootiZ2vc6igbukkxw6rbl64ljZ config]# vi config.toml concurrent 4 #这是一个总的全局控制,它限制了所有pipline,所有runner执行器…

智能运维在配电所设备监控中的应用与洞察

在配电所的设备监控中,智能运维正发挥着越来越重要的作用。通过对配电所内各关键设备的实时监测和数据分析,智能运维系统不仅提高了运维效率,还为我们提供了更深入的设备运行洞察。 一、设备监控概况 配电所内设有多个监测点,包括…

Lumos学习王佩丰Excel第十九讲:Indirect函数

一、认识indirect单元格引用 1、了解Indirect函数的意义及语法 Indirect:引用函数,间接引用。 函数语法:INDIRECT(ref_text,[a1]) 其中,ref_text是一个表示单元格地址或名称的字符串,a1是一个可选的逻辑值参数&…

QT6学习第八天 QFrame 类

QT6学习第八天 QFrame 类族QLabel 标签部件按钮部件QLineEdit 行编辑器部件QAbstractSpinBoxQAbstractSlider 今天来学一学 QFrame 类。 QFrame 类族 QFrame 类是带有边框的部件的基类。它的子类包括常用的标签部件 QLabel、以及 QLCDNumber、QSplitter、QStackedWidget、QToo…

Nginx学习-安装以及基本的使用

一、背景 Nginx是一个很强大的高性能Web和反向代理服务,也是一种轻量级的Web服务器,可以作为独立的服务器部署网站,应用非常广泛,特别是现在前后端分离的情况下。而在开发过程中,我们常常需要在window系统下使用Nginx…

【AI系统】Ascend C 语法扩展

Ascend C 语法扩展 Ascend C 的本质构成其实是标准 C加上一组扩展的语法和 API。本文首先对 Ascend C 的基础语法扩展进行简要介绍,随后讨论 Ascend C 的两种 API——基础 API 和高阶 API。 接下来针对 Ascend C 的几种关键编程对象——数据存储、任务间通信与同步…

java将word docx pdf转换为图片(不需要额外下载压缩包,直接导入maven坐标)

(本代码实现的是将第1页转为图片,主要用于制作文件缩略图) pdf转图片容易 docx转图片麻烦,看其他博客可以直接导入maven坐标,但我知道那是需要付费且有时限的包 本着简单实用的心,我找到法子了 pdf转图片:有库直接转…

工作:三菱PLC防止程序存储器爆满方法

工作:三菱PLC防止程序存储器爆满方法 一、防止程序存储器爆满方法1、编程时,添加行注释时,记得要选“外围”,这样不会占用PLC程序存储器内存;2、选择“外围”的注释,前面会有个*星号,方便检查 二…

「Mac畅玩鸿蒙与硬件36」UI互动应用篇13 - 数字滚动抽奖器

本篇将带你实现一个简单的数字滚动抽奖器。用户点击按钮后,屏幕上的数字会以滚动动画的形式随机变动,最终显示一个抽奖数字。这个项目展示了如何结合定时器、状态管理和动画实现一个有趣的互动应用。 关键词 UI互动应用数字滚动动画效果状态管理用户交…

【C#】书籍信息的添加、修改、查询、删除

文章目录 一、简介二、程序功能2.1 Book类属性:方法: 2.2 Program 类 三、方法:四、用户界面流程:五、程序代码六、运行效果 一、简介 简单的C#控制台应用程序,用于管理书籍信息。这个程序将允许用户添加、编辑、查看…

Linux 各个目录作用

刚毕业的时候学习Linux基础知识,发现了一份特别好的文档快乐的 Linux 命令行,翻译者是happypeter,作者当年也在慕课录制了react等前端相关的视频,通俗易懂,十分推荐 关于Linux的目录,多数博客已有详细介绍…

python学opencv|读取视频(一)灰度视频制作和保存

【1】引言 上一次课学习了用opencv读取图像,掌握了三个函数:cv.imread()、cv.imshow()、cv.imwrite() 相关链接如下: python学opencv|读取图像-CSDN博客 这次课我们继续,来学习用opencv读取视频。 【2】学习资源 首先是官网…

第六届金盾信安杯Web题解

比赛一共4道Web题,比赛时只做出三道,那道文件上传没有做出来,所以这里是另外三道题的WP 分别是 fillllll_put hoverfly ssrf fillllll_put 涉及: 绕过exit() 死亡函数 php://filter 伪协议配合base64加解密 一句话木马 题目源码: $content参数在开头被…

机器学习概述,特征工程简述2.1——2.3

机器学习概述: 1.1人工智能概述 达特茅斯会议—人工智能的起点 机器学习是人工智能的一个实现途径 深度学习是机器学习的一个方法发展而来 1.1.2 机器学习和深度学习能做什么 传统预测 图像识别 自然语言处理 1.2什么是机器学习 数据 模型 预测 从历史数…

嵌入式蓝桥杯学习1 点亮LED

cubemx配置 1.新建一个STM32G431RBT6文件 2.在System-Core中点击SYS,找到Debug(设置为Serial Wire) 3.在System-Core中点击RCC,找到High Speed Clock(设置为Crystal/Ceramic Resonator) 4.打开Clock Configuration &#xff0…

【MySql】navicat连接报2013错误

navicat连接mysql报2013错误 报错信息1、检验Mysql数据库是否安装成功2、对Mysql的配置文件进行修改配置2.1、找到配置文件2.2、Linux下修改配置文本 3、连接进入mysql服务4、在mysql下执行授权命令 报错信息 Navicat连接mysql报2013错误 2013-Lost connection to MYSQL serve…