常见排序算法总结 (三) - 归并排序与归并分治

归并排序

算法思想

将数组元素不断地拆分,直到每一组中只包含一个元素,单个元素天然有序。之后用归并的方式收集跨组的元素,最终形成整个区间上有序的序列。

稳定性分析

归并排序是稳定的,拆分数组时会自然地将元素分成有先后顺序的子数组,在归并的过程中如果遇到相等的值,优先收集早出现的子数组中的那个即可。

具体实现

递归

// 注意预先定义辅助数组,防止递归层数深的情况下花大量时间空间去开数组
public static int MAX_N = 50010;
public static int[] temp = new int[MAX_N];// 归并,用于将已经有序的两个数组合并成更大的有序数组
private void merge(int[] arr, int left, int mid,  int right) {int index1 = left, index2 = mid + 1, index = left;// 两个数组都有剩余元素,每次收集值较小的元素while(index1 <= mid && index2 <= right) {temp[index++] = arr[index1] <= arr[index2] ? arr[index1++] : arr[index2++];}// 其中一个数组为空,将另一个数组剩余的所有元素都添加到结果数组的末尾while(index1 <= mid) {temp[index++] = arr[index1++];}while(index2 <= right) {temp[index++] = arr[index2++];}// 结果回写到原数组System.arraycopy(temp, left, arr, left, right - left + 1);
}// 归并排序
private void mergeSort(int[] arr, int left, int right) {// 左右端点相同,数组中只有单个元素认为天然有序if (left == right) {return;}int mid = left + ((right - left) >>> 1); // 计算区间中点作为划分数组的依据// 递归地对左半边数组进行排序mergeSort(arr, left, mid);// 递归地对右半边数组进行排序mergeSort(arr, mid + 1, right);// 归并收集结果merge(arr, left, mid, right);
}

非递归

// 注意预先定义辅助数组,防止递归层数深的情况下花大量时间空间去开数组
public static int MAX_N = 50010;
public static int[] temp = new int[MAX_N];// 归并方法,用于将已经有序的两个数组合并成更大的有序数组
private void merge(int[] arr, int left, int mid,  int right) {int index1 = left, index2 = mid + 1, index = left;// 两个数组都有剩余元素,每次收集值较小的元素while(index1 <= mid && index2 <= right) {temp[index++] = arr[index1] <= arr[index2] ? arr[index1++] : arr[index2++];}// 其中一个数组为空,将另一个数组剩余的所有元素都添加到结果数组的末尾while(index1 <= mid) {temp[index++] = arr[index1++];}while(index2 <= right) {temp[index++] = arr[index2++];}// 结果回写到原数组System.arraycopy(temp, left, arr, left, right - left + 1);
}// 归并排序
private void mergeSort(int[] arr) {int n = arr.length;// 根据步长来迭代,每一轮扩大一倍for (int left, mid, right, step = 1; step < n; step <<= 1) {left = 0; // 左端点从 0 开始while (left < n) {mid = left + step - 1; // 计算区间中点的位置// 另一半区间无法构成,直接进行下一轮if (mid >= n - 1) {break;}// 数组内剩余元素不一定够填满右半边数组,右端点要根据情况来取值right = Math.min(left + (step << 1) - 1, n - 1);merge(arr, left, mid, right);// 移动指针,准备归并右半边数组left = right + 1;}}
}

归并分治

分治是一种算法思想,归并分治顾名思义就是涉及到了归并的分治策略。这部分内容其实和排序关系不大,但是作为归并应用的扩展放在一起整理比较合适的。

算法思想

如果一个问题满足两个条件,那么大概率可以使用归并分治解决:

  • 全局的结果相当于划分成两部分之后,左半边、右半边与跨左右三部分的结果的并集,也就是这个问题可以总中间拆分成子问题。
  • 如果拆分之后小范围上有序,能够使得计算跨左右的答案时更方便。

实践案例:Leetcode 493. 翻转对

递归

class Solution {// 注意预先定义辅助数组,防止递归层数深的情况下花大量时间空间去开数组public static int MAX_N = 50010;public static int[] temp = new int[MAX_N];public int reversePairs(int[] nums) {return reversePairs(nums, 0, nums.length - 1);}// 重载一个同名方法,将它改造成方便递归的形式private int reversePairs(int[] nums, int left, int right) {// 只有一个元素的情况下没有答案if(left == right) {return 0;}int mid = left + ((right - left) >>> 1);// 结果等于左半边、右半边与跨左右的结果的并集return reversePairs(nums, left, mid) + reversePairs(nums, mid + 1, right) + merge(nums, left, mid, right);}private int merge(int[] nums, int left, int mid,  int right) {int res = 0;// 当前跨小范围的情况下,更小范围内已经有序for(int i = left, j = mid + 1; i <= mid; i++) {// 确定了当前轮 j 的位置之后,这个指针不会回退,这也是提升性能的根本原因while(j <= right && (long) nums[i] > (long) 2 * nums[j]) {j++;}res += j - mid - 1;}// 常规归并流程int index1 = left, index2 = mid + 1, index = left;while(index1 <= mid && index2 <= right) {temp[index++] = nums[index1] <= nums[index2] ? nums[index1++] : nums[index2++];}while(index1 <= mid) {temp[index++] = nums[index1++];}while(index2 <= right) {temp[index++] = nums[index2++];}System.arraycopy(temp, left, nums, left, right - left + 1);return res;}
}

非递归

class Solution {// 注意预先定义辅助数组,防止递归层数深的情况下花大量时间空间去开数组public static int MAX_N = 50010;public static int[] temp = new int[MAX_N];public int reversePairs(int[] nums) {int res = 0;int n = nums.length;for (int left, mid, right, step = 1; step < n; step <<= 1) {left = 0;while (left < n) {mid = left + step - 1;if (mid >= n - 1) {break;}right = Math.min(left + (step << 1) - 1, n - 1);res += merge(nums, left, mid, right); // 累计每次归并的结果left = right + 1;}}return res;}private int merge(int[] nums, int left, int mid,  int right) {int res = 0;// 当前跨小范围的情况下,更小范围内已经有序for(int i = left, j = mid + 1; i <= mid; i++) {// 确定了当前轮 j 的位置之后,这个指针不会回退,这也是提升性能的根本原因while(j <= right && (long) nums[i] > (long) 2 * nums[j]) {j++;}res += j - mid - 1;}// 常规归并流程int index1 = left, index2 = mid + 1, index = left;while(index1 <= mid && index2 <= right) {temp[index++] = nums[index1] <= nums[index2] ? nums[index1++] : nums[index2++];}while(index1 <= mid) {temp[index++] = nums[index1++];}while(index2 <= right) {temp[index++] = nums[index2++];}System.arraycopy(temp, left, nums, left, right - left + 1);return res;}
}

梳理总结

分治是一种通过不断划分来减小问题规模,而归并是用来收集得到全局结果的方法。上面的例子所使用的都是一分为二的做法,其实每一轮可以划分成更多子问题,演变成多路归并。
正是上面这种不停划分的过程,使得无论是归并排序还是归并分治,都能有效地将暴力搜索需要 O ( N 2 ) O(N ^ 2) O(N2) 量级的方法,优化到 O ( N l o g N ) O(NlogN) O(NlogN) 这个级别。
当然,本质上来说还是空间换时间,这样的操作很明显需要 O ( N ) O(N) O(N) 量级的额外空间。

从使用上来说,归并排序一般不会成为手写排序的选择。但是归并分治则是很多问题的优秀解决方案,需要注意它的使用前提和具体实现。

后记

使用 Leetcode 912. 排序数组 进行测试,归并排序能够比较高高效地完成任务,略逊于计数排序和基数排序(不过其实题目要求使用尽可能少的额外空间,归并排序肯定不属于首选的方案)。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/483630.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

游戏引擎学习第25天

Git: https://gitee.com/mrxiao_com/2d_game 今天的计划 总结和复述&#xff1a; 这段时间的工作已经接近尾声&#xff0c;虽然每次编程的时间只有一个小时&#xff0c;但每一天的进展都带来不少收获。尽管看起来似乎花费了很多时间&#xff0c;实际上这些日积月累的时间并未…

【C++】深入优化计算题目分析与实现

博客主页&#xff1a; [小ᶻ☡꙳ᵃⁱᵍᶜ꙳] 本文专栏: C 文章目录 &#x1f4af;前言&#x1f4af;第一题&#xff1a;圆的计算我的代码实现代码分析改进建议改进代码 老师的代码实现代码分析可以改进的地方改进代码 &#x1f4af;第二题&#xff1a;对齐输出我的代码实现…

Kafka配置SASL/PLAINTEXT安全认证

1、下载安装 Kafka下载地址&#xff1a;Apache Kafka 下载文件 wget https://downloads.apache.org/kafka/3.8.0/kafka_2.12-3.8.0.tgz 文件解压缩 tar -zxvf kafka_2.12-3.8.0.tgz 进入目录 cd kafka_2.12-3.8.0 2、Zookeeper 配置 2.1、修改 Zookeeper 配置文件 con…

go并发设计模式runner模式

go并发设计模式runner模式 真正运行的程序不可能是单线程运行的&#xff0c;go语言中最值得骄傲的就是CSP模型了&#xff0c;可以说go语言是CSP模型的实现。 假设现在有一个程序需要实现&#xff0c;这个程序有以下要求&#xff1a; 程序可以在分配的时间内完成工作&#xff0…

机器学习周志华学习笔记-第13章<半监督学习>

机器学习周志华学习笔记-第13章&#xff1c;半监督学习&#xff1e; 卷王&#xff0c;请看目录 13半监督学习13.1 生成式方法13.2 半监督SVM13.3 基于分歧的方法13.4 半监督聚类 13半监督学习 前面我们一直围绕的都是监督学习与无监督学习&#xff0c;监督学习指的是训练样本包…

DevOps工程技术价值流:GitLab源码管理与提交流水线实践

在当今快速迭代的软件开发环境中&#xff0c;DevOps&#xff08;开发运维一体化&#xff09;已经成为提升软件交付效率和质量的关键。而GitLab&#xff0c;作为一个全面的开源DevOps平台&#xff0c;不仅提供了强大的版本控制功能&#xff0c;还集成了持续集成/持续交付(CI/CD)…

Android笔记【12】脚手架Scaffold和导航Navigation

一、前言 学习课程时&#xff0c;对于自己不懂的点的记录。 对于cy老师第二节课总结。 二、内容 1、PPT介绍scaffold 2、开始代码实操 先新建一个screen包&#xff0c;写一个Homescreen函数&#xff0c;包括四个页面。 再新建一个compenent包&#xff0c;写一个displayText…

动态规划-----路径问题

动态规划-----路径问题 下降最小路径和1&#xff1a;状态表示2&#xff1a;状态转移方程3 初始化4 填表顺序5 返回值6 代码实现 总结&#xff1a; 下降最小路径和 1&#xff1a;状态表示 假设&#xff1a;用dp[i][j]表示&#xff1a;到达[i,j]的最小路径 2&#xff1a;状态转…

C_字符串的一些函数

1.字符串输入函数 scanf("%s",数组名)&#xff1b; gets(数组名)&#xff1b; 区别&#xff1a; scanf(“%s”,数组名); 把空格识别为输入结束 #include <stdio.h>int main() {char a[10];printf("输入&#xff1a;");scanf("%s",a)…

【数据事务】.NET开源 ORM 框架 SqlSugar 系列

.NET开源 ORM 框架 SqlSugar 系列 【开篇】.NET开源 ORM 框架 SqlSugar 系列【入门必看】.NET开源 ORM 框架 SqlSugar 系列【实体配置】.NET开源 ORM 框架 SqlSugar 系列【Db First】.NET开源 ORM 框架 SqlSugar 系列【Code First】.NET开源 ORM 框架 SqlSugar 系列【数据事务…

Zookeeper集群数据是如何同步的?

大家好&#xff0c;我是锋哥。今天分享关于【Zookeeper集群数据是如何同步的?】面试题。希望对大家有帮助&#xff1b; Zookeeper集群数据是如何同步的? 1000道 互联网大厂Java工程师 精选面试题-Java资源分享网 Zookeeper集群中的数据同步是通过一种称为ZAB&#xff08;Zo…

MySQL需掌握到何种程度?才能胜任工作

大家好&#xff0c;我是袁庭新。星友问&#xff1a;MySQL需要学到什么程度&#xff1f;才能胜任日常的软件开发工作呢&#xff01;以下是一些建议的学习目标和程度&#xff0c;这些目标旨在帮助你在工作中高效地使用MySQL。 数据库的基本概念、MySQL的安装及配置、SQL的概念、S…

HTML 快速上手

目录 一. HTML概念 二. HTML标签 1. 标题标签 2. 段落标签 3. 换行标签 4. 图片标签 5. 超链接标签 6. 表格标签 7. 表单标签 7.1 form 标签 7.2 input 标签 (1) 文本框 (2) 单选框 (3) 密码框 (4) 复选框 (5) 普通按钮 (6) 提交按钮 8. select标签 9. 无语义…

Qt 2D绘图之三:绘制文字、路径、图像、复合模式

参考文章链接: Qt 2D绘图之三:绘制文字、路径、图像、复合模式 绘制文字 除了绘制图形以外,还可以使用QPainter::darwText()函数来绘制文字,也可以使用QPainter::setFont()设置文字所使用的字体,使用QPainter::fontInfo()函数可以获取字体的信息,它返回QFontInfo类对象…

java调用ai模型:使用国产通义千问完成基于知识库的问答

整体介绍&#xff1a; 基于RAG&#xff08;Retrieval-Augmented Generation&#xff09;技术&#xff0c;可以实现一个高效的Java智能问答客服机器人。核心思路是将预先准备的问答QA文档&#xff08;例如Word格式文件&#xff09;导入系统&#xff0c;通过数据清洗、向量化处理…

Java 基于Spring AI RAG组件做AI智能问答_rag检索增强_AI智能问答

基于RAG技术构建高效Java智能问答客服机器人 基于RAG&#xff08;Retrieval-Augmented Generation&#xff09;技术&#xff0c;可以构建高效的Java智能问答客服机器人。首先&#xff0c;通过向量化处理将Word格式的问答QA文档转换为机器可理解的形式&#xff0c;并存储于Vect…

顶刊算法 | 鱼鹰算法OOA-BiTCN-BiGRU-Attention多输入单输出回归预测(Maltab)

顶刊算法 | 鱼鹰算法OOA-BiTCN-BiGRU-Attention多输入单输出回归预测&#xff08;Maltab&#xff09; 目录 顶刊算法 | 鱼鹰算法OOA-BiTCN-BiGRU-Attention多输入单输出回归预测&#xff08;Maltab&#xff09;效果一览基本介绍程序设计参考资料 效果一览 基本介绍 1.Matlab实…

Redis+Caffeine 多级缓存数据一致性解决方案

RedisCaffeine 多级缓存数据一致性解决方案 背景 之前写过一篇文章RedisCaffeine 实现两级缓存实战&#xff0c;文章提到了两级缓存RedisCaffeine可以解决缓存雪等问题也可以提高接口的性能&#xff0c;但是可能会出现缓存一致性问题。如果数据频繁的变更&#xff0c;可能会导…

单片机学习笔记 12. 定时/计数器_定时

更多单片机学习笔记&#xff1a;单片机学习笔记 1. 点亮一个LED灯单片机学习笔记 2. LED灯闪烁单片机学习笔记 3. LED灯流水灯单片机学习笔记 4. 蜂鸣器滴~滴~滴~单片机学习笔记 5. 数码管静态显示单片机学习笔记 6. 数码管动态显示单片机学习笔记 7. 独立键盘单片机学习笔记 8…

6.824/6.5840(2024)环境配置wsl2+vscode

本文是经过笔者实践得出的最速の环境配置 首先&#xff0c;安装wsl2和vscode 具体步骤参见Mit6.s081环境配置踩坑之旅WSL2VScode_mit6s081-CSDN博客 接下来开始为Ubuntu(笔者使用的版本依然是20.04)配置go的相关环境 1、更新Ubuntu的软件包 sudo apt-get install build-es…