遗传算法与深度学习实战(26)——编码卷积神经网络架构

遗传算法与深度学习实战(26)——编码卷积神经网络架构

    • 0. 前言
    • 1. EvoCNN 原理
      • 1.1 工作原理
      • 1.2 基因编码
    • 2. 编码卷积神经网络架构
    • 小结
    • 系列链接

0. 前言

我们已经学习了如何构建卷积神经网络 (Convolutional Neural Network, CNN),在本节中,我们将了解如何将 CNN 模型的网络架构编码为基因,这是将基因序列进化在为给定数据集上训练最佳模型的先决条件。

1. EvoCNN 原理

进化卷积神经网络 (Evolutionary Convolutional Neural Network, EvoCNN) 是一种结合了进化算法和卷积神经网络的方法。
我们知道进化算法是一类基于生物进化过程中的选择、变异和竞争机制的优化算法。在进化卷积神经网络中,进化算法用来优化卷积神经网络 (Convolutional Neural Network, CNN) 的结构或超参数,以提升其性能和适应特定任务的能力。

1.1 工作原理

EvoCNN 可以利用进化算法来自动设计 CNN 的网络结构,包括卷积层的数量、每层的卷积核大小、池化操作的类型等。自动设计的过程可以帮助避免人工设计网络结构时的主观偏差,并且可以根据具体任务调整网络结构。
除了网络结构外,进化算法还可以用于优化 CNN 的超参数,如学习率、批处理大小等,以提升训练效率和模型性能。
EvoCNN 的另一个优点是其适应性强,能够适应不同的任务和数据集。通过进化算法,网络可以在训练过程中动态调整,以适应变化的输入数据和任务要求。

1.2 基因编码

EvoCNN 是演化 CNN 模型架构的模型,其定义了一种将卷积网络编码为可变长度基因序列的过程,如下图所示。

EvoCNN

2. 编码卷积神经网络架构

(1) 首先,导入所需库,并加载数据集:

import tensorflow as tf
from tensorflow.keras import datasets, layers, models
import numpy as np
import math
import time
import randomimport matplotlib.pyplot as plt
from livelossplot import PlotLossesKerasdataset = datasets.fashion_mnist
(x_train, y_train), (x_test, y_test) = dataset.load_data()# normalize and reshape data
x_train = x_train.reshape(x_train.shape[0], 28, 28, 1).astype("float32") / 255.0
x_test = x_test.reshape(x_test.shape[0], 28, 28, 1).astype("float32") / 255.0x_train = x_train[:1000]
y_train= y_train[:1000]
x_test = x_test[:100]
y_test= y_test[:100]class_names = ['T-shirt/top', 'Trouser', 'Pullover', 'Dress', 'Coat','Sandal', 'Shirt', 'Sneaker', 'Bag', 'Ankle boot']def plot_data(num_images, images, labels):grid = math.ceil(math.sqrt(num_images))plt.figure(figsize=(grid*2,grid*2))for i in range(num_images):plt.subplot(grid,grid,i+1)plt.xticks([])plt.yticks([])plt.grid(False)     plt.imshow(images[i].reshape(28,28))plt.xlabel(class_names[labels[i]])      plt.show()plot_data(25, x_train, y_train)

构建基因序列时,我们希望定义一个基本规则,所有模型都以卷积层开始,并以全连接层作为输出层结束。为了简化问题,我们无需编码最后的输出层。

(2) 在每个主要网络层内部,我们还需要定义相应的超参数选项,例如滤波器数量和卷积核大小。为了编码多样化数据,我们需要分离主要网络层和相关超参数。设置常量用于定义网络层类型和长度以封装各种相关的超参数。定义总最大网络层数和各种网络层超参数的范围,之后,定义每种类型的块标识符及其相应的大小(该值表示每个层定义的长度,包括超参数):

max_layers = 5
max_neurons = 128
min_neurons = 16
max_kernel = 5
min_kernel = 2
max_pool = 3
min_pool = 2CONV_LAYER = -1
CONV_LAYER_LEN = 4
POOLING_LAYER = -2
POOLING_LAYER_LEN = 3
BN_LAYER = -3
BN_LAYER_LEN = 1
DENSE_LAYER = -4
DENSE_LAYER_LEN = 2

下图展示了编码层块及其相应超参数的基因序列。需要注意的是,负值 -1-2-3-4 表示网络层的开始。然后,根据层类型,进一步定义滤波器数量和卷积核大小等超参数。

编码过程

(3) 构建个体的基因序列(染色体),create_offspring() 函数是构建序列的基础。此代码循环遍历最大层数次,并检查是否(以 50% 的概率)添加卷积层。如果是,则进一步检查是否(以 50% 的概率)添加批归一化和池化层:

def create_offspring():ind = []for i in range(max_layers):if random.uniform(0,1)<.5:#add convolution layerind.extend(generate_conv_layer())if random.uniform(0,1)<.5:#add batchnormalizationind.extend(generate_bn_layer())if random.uniform(0,1)<.5:#add max pooling layerind.extend(generate_pooling_layer())ind.extend(generate_dense_layer())return ind

(4) 编写用于构建网络层的辅助函数:

def generate_neurons():return random.randint(min_neurons, max_neurons)def generate_kernel():part = []part.append(random.randint(min_kernel, max_kernel))part.append(random.randint(min_kernel, max_kernel))return partdef generate_bn_layer():part = [BN_LAYER] return partdef generate_pooling_layer():part = [POOLING_LAYER] part.append(random.randint(min_pool, max_pool))part.append(random.randint(min_pool, max_pool))return partdef generate_dense_layer():part = [DENSE_LAYER] part.append(generate_neurons())  return partdef generate_conv_layer():part = [CONV_LAYER] part.append(generate_neurons())part.extend(generate_kernel())return part

(5) 调用 create_offspring() 生成基因序列,输出如下所示。可以多次调用该函数,观察创建的基因序列的变化:

individual = create_offspring()
print(individual)
# [-1, 37, 5, 2, -3, -1, 112, 4, 2, -4, 25]

(6) 获取基因序列后,继续构建模型,解析基因序列并创建 Keras 模型。build_model 的输入是单个基因序列,利用基因序列产生 Keras 模型。定义网络层之后,根据网络层类型添加超参数:

def build_model(individual):model = models.Sequential()il = len(individual)i = 0while i < il:if individual[i] == CONV_LAYER: n = individual[i+1]k = (individual[i+2], individual[i+3])i += CONV_LAYER_LENif i == 0: #first layer, add input shape      model.add(layers.Conv2D(n, k, activation='relu', padding="same", input_shape=(28, 28, 1)))      else:model.add(layers.Conv2D(n, k, activation='relu', padding="same"))    elif individual[i] == POOLING_LAYER: #add pooling layerk = k = (individual[i+1], individual[i+2])i += POOLING_LAYER_LENmodel.add(layers.MaxPooling2D(k, padding="same"))      elif individual[i] == BN_LAYER: #add batch normal layermodel.add(layers.BatchNormalization())i += 1      elif individual[i] == DENSE_LAYER: #add dense layermodel.add(layers.Flatten())      model.add(layers.Dense(individual[i+1], activation='relu'))i += 2model.add(layers.Dense(10))return modelmodel = build_model(individual)

(7) 创建一个新的个体基因序列,根据序列构建一个模型,然后训练模型,输出训练/验证过程中模型性能:

individual = create_offspring()model = build_model(individual) model.compile(optimizer='adam',loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),metrics=['accuracy'])history = model.fit(x_train, y_train, epochs=10, validation_data=(x_test, y_test),callbacks=[PlotLossesKeras()],verbose=0)model.summary()
model.evaluate(x_test, y_test)

模型性能的优略取决于随机初始序列,多次运行代码,以观察不同初始随机个体之间的差异。可以通过完成以下问题进一步了解网络架构编码:

  • 通过调用循环中的 create_offspring 函数,创建一个新的基因编码序列列表,打印并比较不同个体
  • 修改最大/最小范围超参数,然后生成一个新的后代列表
  • 添加一个新输入到 create_offspring 函数,将概率从 0.5 更改为其他值。然后,生成一个后代列表进行比较

小结

进化卷积神经网络 (Evolutionary Convolutional Neural Network, EvoCNN) 通过结合进化算法的优势,提供了一种自动化设计和优化深度学习模型的方法。在本节中,我们介绍了如何将卷积神经网络架构编码为基因序列,为构建进化卷积神经网络奠定基础。

系列链接

遗传算法与深度学习实战(1)——进化深度学习
遗传算法与深度学习实战(2)——生命模拟及其应用
遗传算法与深度学习实战(3)——生命模拟与进化论
遗传算法与深度学习实战(4)——遗传算法(Genetic Algorithm)详解与实现
遗传算法与深度学习实战(5)——遗传算法中常用遗传算子
遗传算法与深度学习实战(6)——遗传算法框架DEAP
遗传算法与深度学习实战(7)——DEAP框架初体验
遗传算法与深度学习实战(8)——使用遗传算法解决N皇后问题
遗传算法与深度学习实战(9)——使用遗传算法解决旅行商问题
遗传算法与深度学习实战(10)——使用遗传算法重建图像
遗传算法与深度学习实战(11)——遗传编程详解与实现
遗传算法与深度学习实战(12)——粒子群优化详解与实现
遗传算法与深度学习实战(13)——协同进化详解与实现
遗传算法与深度学习实战(14)——进化策略详解与实现
遗传算法与深度学习实战(15)——差分进化详解与实现
遗传算法与深度学习实战(16)——神经网络超参数优化
遗传算法与深度学习实战(17)——使用随机搜索自动超参数优化
遗传算法与深度学习实战(18)——使用网格搜索自动超参数优化
遗传算法与深度学习实战(19)——使用粒子群优化自动超参数优化
遗传算法与深度学习实战(20)——使用进化策略自动超参数优化
遗传算法与深度学习实战(21)——使用差分搜索自动超参数优化
遗传算法与深度学习实战(22)——使用Numpy构建神经网络
遗传算法与深度学习实战(23)——利用遗传算法优化深度学习模型
遗传算法与深度学习实战(24)——在Keras中应用神经进化优化
遗传算法与深度学习实战(25)——使用Keras构建卷积神经网络

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/483908.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

数学建模之熵权法

熵权法 概述 **熵权法(Entropy Weight Method,EWM)**是一种客观赋权的方法&#xff0c;原理&#xff1a;指标的变异程度越小&#xff0c;所包含的信息量也越小&#xff0c;其对应的权值应该越低&#xff08;例如&#xff0c;如果对于所有样本而言&#xff0c;某项指标的值都相…

同道猎聘Q3营收降利润增,AI或成估值重塑关键词

2024年&#xff0c;经济向好的趋势没有改变&#xff0c;挑战却仍然存在。企业纷纷进行结构性变革优化或业务方向调整。这一点反映到人才市场&#xff0c;绝大多数企业对招聘扩张持保守态度&#xff0c;降本增效的主题仍在延续。 作为人才市场水温变化的“温度计”&#xff0c;…

46 基于单片机的烧水壶系统设计

目录 一、主要功能 二、硬件资源 三、程序编程 四、实现现象 一、主要功能 基于STC89C52RC单片机&#xff0c;采用四个按键&#xff0c;通过DS18B20检测温度&#xff0c;开机显示实时温度 第一个按键为切换功能按键&#xff0c;按下后&#xff0c;可以设置烧水温度的大小&…

推荐学习笔记:矩阵补充和矩阵分解

参考&#xff1a; 召回 fun-rec/docs/ch02/ch2.1/ch2.1.1/mf.md at master datawhalechina/fun-rec GitHub 业务 隐语义模型与矩阵分解 协同过滤算法的特点&#xff1a; 协同过滤算法的特点就是完全没有利用到物品本身或者是用户自身的属性&#xff0c; 仅仅利用了用户与…

【机器学习】—Transformers的扩展应用:从NLP到多领域突破

好久不见&#xff01;喜欢就关注吧~ 云边有个稻草人-CSDN博客 目录 引言 一、Transformer架构解析 &#xff08;一&#xff09;、核心组件 &#xff08;二&#xff09;、架构图 二、领域扩展&#xff1a;从NLP到更多场景 1. 自然语言处理&#xff08;NLP&#xff09; 2…

【SpringMVC】用户登录器项目,加法计算器项目的实现

阿华代码&#xff0c;不是逆风&#xff0c;就是我疯 你们的点赞收藏是我前进最大的动力&#xff01;&#xff01; 希望本文内容能够帮助到你&#xff01;&#xff01; 目录 一&#xff1a;用户登录项目实现 1&#xff1a;需求 2&#xff1a;准备工作 &#xff08;1&#xf…

数据结构(2)——顺序表的模拟实现

一&#xff1a;顺序表的认识 通过数据结构&#xff08;1&#xff09;对于算法复杂度的理解&#xff0c;现在我们正式进入数据结构的核心内容&#xff0c;今天&#xff0c;先来使用C语言实现一下数据结构中最简单的顺序表。 首先介绍一下顺序表的概念&#xff0c;先从线性表说…

docker更换容器存储位置

一&#xff1a;原因 今天之前在某个服务器上使用docker搭建的服务突然无法访问了&#xff0c;进入服务器查看发现服务运行正常&#xff0c;但是就是无法使用&#xff0c;然后我这边准备将docker服务重新启动下看看&#xff0c;发现docker服务无法重启&#xff0c;提示内存已满…

Day5:生信新手笔记 — R语言基本语法

一、数据类型 &#xff08;重点只有两个&#xff0c;剩下的不看&#xff09; 1.1 向量&#xff08;vector&#xff09; 矩阵&#xff08;Matrix&#xff09; 数组&#xff08;Array&#xff09; 1.2 数据框&#xff08;Data frame&#xff09; x<- c(1,2,3) #常用的向…

【机器学习】窥数据之序,悟算法之道:机器学习的初心与远方

文章目录 机器学习入门&#xff1a;从零开始学习基础与应用前言第一部分&#xff1a;什么是机器学习&#xff1f;1.1 机器学习的定义1.1.1 举个例子&#xff1a;垃圾邮件分类器 1.2 机器学习的核心思想1.2.1 数据驱动的模式提取1.2.2 为什么机器学习比传统方法更灵活&#xff1…

Linux权限机制深度解读:系统安全的第一道防线

文章目录 前言‼️一、Linux权限的概念‼️二、Linux权限管理❕2.1 文件访问者的分类&#xff08;人&#xff09;❕2.2 文件类型和访问权限&#xff08;事物属性&#xff09;✔️1. 文件类型✔️2. 基本权限✔️3. 权限值的表示方法 ❕2.3 文件访问权限的相关设置方法✔️1. ch…

Ubuntu22.04系统源码编译OpenCV 4.10.0(包含opencv_contrib)

因项目需要使用不同版本的OpenCV&#xff0c;而本地的Ubuntu22.04系统装了ROS2自带OpenCV 4.5.4的版本&#xff0c;于是编译一个OpenCV 4.10.0&#xff08;带opencv_contrib&#xff09;版本&#xff0c;给特定的项目使用&#xff0c;这就不用换个设备后重新安装OpenCV 了&…

【C++】—— set 与 multiset

【C】—— map 与 set 1 序列式容器和关联式容器2 set 系列的使用2.1 set 和 multiset 参考文档2.2 set 类的介绍2.3 set 的迭代器和构造2.4 set的增删查2.4.1 insert2.4.2 find 与 erase2.4.3 count 2.5 lower_bound 与 upper_bound2.6 multiset 与 set 的差异2.6.1 不再去重2…

华为、华三交换机纯Web下如何创关键VLANIF、操作STP参数

华为交换机WEB操作 使用的是真机S5735&#xff0c;目前主流的版本都适用&#xff08;V1R5~V2R1的就不在列了&#xff0c;版本太老了&#xff0c;界面完全不一样&#xff0c;这里调试线接的console口&#xff0c;电脑的网络接在ETH口&#xff09; 「模拟器、工具合集」复制整段内…

学习threejs,使用canvas更新纹理

&#x1f468;‍⚕️ 主页&#xff1a; gis分享者 &#x1f468;‍⚕️ 感谢各位大佬 点赞&#x1f44d; 收藏⭐ 留言&#x1f4dd; 加关注✅! &#x1f468;‍⚕️ 收录于专栏&#xff1a;threejs gis工程师 文章目录 一、&#x1f340;前言1.1 ☘️Texture 贴图 二、&#x1…

Redis设计与实现读书笔记

Redis设计与实现读书笔记 Redis设计与实现[^1]简单动态字符串SDS的基础定义与C字符串的差别常数获取长度杜绝缓冲区溢出减少修改字符串时带来的内存重分配次数二进制安全函数兼容 链表链表和链表节点的实现 字典字典的实现哈希表定义哈希表节点定义字典定义 哈希算法解决键冲突…

【笔记】离散数学 1-3 章

1. 数理逻辑 1.1 命题逻辑的基本概念 1.1.1 命题的概念 命题&#xff08;Proposition&#xff09;&#xff1a;是一个陈述句&#xff0c;它要么是真的&#xff08;true&#xff09;&#xff0c;要么是假的&#xff08;false&#xff09;&#xff0c;但不能同时为真和假。例如…

SQL SERVER 2016 AlwaysOn 无域集群+负载均衡搭建与简测

之前和很多群友聊天发现对2016的无域和负载均衡满心期待&#xff0c;毕竟可以简单搭建而且可以不适用第三方负载均衡器&#xff0c;SQL自己可以负载了。windows2016已经可以下载使用了&#xff0c;那么这回终于可以揭开令人憧憬向往的AlwaysOn2016 负载均衡集群的神秘面纱了。 …

浅谈——Linux命令入门之前奏

目录 一、备份操作系统 1、快照 2、克隆 二、操作系统的使用注意 1、Linux严格区分大小写 2、Linux 文件“扩展名” 3、Linux 中所有的内容以文件的形式进行保存 4、Linux 中所有的存储设备都必须挂载之后才能使用 5、Linux 系统文件目录的结构 6、Linux 系统文件的目…

matlab中disp,fprintf,sprintf,display,dlmwrite输出函数之间的区别

下面是他们之间的区别&#xff1a; disp函数与fprintf函数的区别 输出格式的灵活性 disp函数&#xff1a;输出格式相对固定。它会自动将变量以一种比较直接的方式显示出来。对于数组&#xff0c;会按照行列形式展示&#xff1b;对于字符串&#xff0c;直接原样输出并换行。例如…