【k8s】监控metrics-server

metrics-server介绍

      Metrics Server是一个集群范围的资源使用情况的数据聚合器。作为一个应用部署在集群中。Metric server从每个节点上KubeletAPI收集指标,通过Kubernetes聚合器注册在Master APIServer中。为集群提供Node、Pods资源利用率指标。

      就像Linux 系统一样有一个命令 top 能够实时显示当前系统的 CPU 和内存利用率,它是性能分析和调优的基本工具,非常有用。Kubernetes 也提供了类似的命令,就是 kubectl top,不过默认情况下这个命令不会生效,必须要安装一个插件 Metrics Server 才可以。Metrics Server 是一个专门用来收集 Kubernetes 核心资源指标(metrics)的工具,它定时从所有节点的 kubelet 里采集信息,但是对集群的整体性能影响极小,每个节点只大约会占用 1m 的 CPU 和 2MB 的内存,所以性价比非常高。

      下面的这张图来自 Kubernetes 官网,你可以对 Metrics Server 的工作方式有个大概了解:它调用 kubelet 的 API 拿到节点和 Pod 的指标,再把这些信息交给 apiserver,这样 kubectl、HPA 就可以利用 apiserver 来读取指标了:

      Metrics Server项目的地址github:https://github.com/kubernetes-sigs/metrics-server

  

metrics-server作用

功能

      metrics-server 是 Kubernetes 的一个集群范围的资源使用数据聚合器。它从各个节点上的 kubelet 收集资源使用数据(如 CPU、内存),并通过 Kubernetes API 服务器公开这些数据。metrics-server 使得 Kubernetes 控制平面和其他组件能够访问这些资源使用数据.

     为 Kubernetes 控制平面提供实时的资源使用数据,支持水平 Pod 自动扩展 (HPA)、

HorizontalPodAutoscaler 实现了应用的自动水平伸缩功能,它从 Metrics Server 获取应用的运行指标,再实时调整 Pod 数量,可以很好地应对突发流量。还有k8s 的Dashboard 中的资源使用图表等功能。通过 kubectl top 命令查看节点和 Pod 的资源使用情况。

metrics-server安装

安装要求

      Metrics Server 对集群和网络配置有特定的要求。这些要求并不是所有集群分布的默认要求。在使用 Metrics Server 之前,请确保您的集群分布支持这些要求:

1、kube-apiserver 必须启用聚合层。

    api-server的配置: - --enable-aggregator-routing=true
2、Kubelet 证书需要由集群证书颁发机构签名;如果kubelet是有自己本地创建的证书,那么metrics-server需要配置args : "--kubelet-insecure-tls"
   网上还有人提到: 节点必须启用 Webhook身份验证和授权。【没有找到配置的地方,可能是默认开启了】

安装资料准备

    本次安装是: Release v0.7.2 · kubernetes-sigs/metrics-server · GitHub

     安装的yaml文件:kubectl apply -f https://github.com/kubernetes-sigs/metrics-server/releases/download/v0.7.2/components.yaml    

    修改镜像国内镜像地址:

   

apiVersion: v1
kind: ServiceAccount
metadata:labels:k8s-app: metrics-servername: metrics-servernamespace: kube-system
---
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata:labels:k8s-app: metrics-serverrbac.authorization.k8s.io/aggregate-to-admin: "true"rbac.authorization.k8s.io/aggregate-to-edit: "true"rbac.authorization.k8s.io/aggregate-to-view: "true"name: system:aggregated-metrics-reader
rules:
- apiGroups:- metrics.k8s.ioresources:- pods- nodesverbs:- get- list- watch
---
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata:labels:k8s-app: metrics-servername: system:metrics-server
rules:
- apiGroups:- ""resources:- nodes/metricsverbs:- get
- apiGroups:- ""resources:- pods- nodesverbs:- get- list- watch
---
apiVersion: rbac.authorization.k8s.io/v1
kind: RoleBinding
metadata:labels:k8s-app: metrics-servername: metrics-server-auth-readernamespace: kube-system
roleRef:apiGroup: rbac.authorization.k8s.iokind: Rolename: extension-apiserver-authentication-reader
subjects:
- kind: ServiceAccountname: metrics-servernamespace: kube-system
---
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRoleBinding
metadata:labels:k8s-app: metrics-servername: metrics-server:system:auth-delegator
roleRef:apiGroup: rbac.authorization.k8s.iokind: ClusterRolename: system:auth-delegator
subjects:
- kind: ServiceAccountname: metrics-servernamespace: kube-system
---
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRoleBinding
metadata:labels:k8s-app: metrics-servername: system:metrics-server
roleRef:apiGroup: rbac.authorization.k8s.iokind: ClusterRolename: system:metrics-server
subjects:
- kind: ServiceAccountname: metrics-servernamespace: kube-system
---
apiVersion: v1
kind: Service
metadata:labels:k8s-app: metrics-servername: metrics-servernamespace: kube-system
spec:ports:- name: httpsport: 443protocol: TCPtargetPort: httpsselector:k8s-app: metrics-server
---
apiVersion: apps/v1
kind: Deployment
metadata:labels:k8s-app: metrics-servername: metrics-servernamespace: kube-system
spec:selector:matchLabels:k8s-app: metrics-serverstrategy:rollingUpdate:maxUnavailable: 0template:metadata:labels:k8s-app: metrics-serverspec:containers:- args:- --cert-dir=/tmp- --secure-port=10250- --kubelet-preferred-address-types=InternalIP,ExternalIP,Hostname- --kubelet-insecure-tls 【后面添加的】- --kubelet-use-node-status-port- --metric-resolution=15simage: xxxxxxx/metrics-server/metrics-server:v0.7.2imagePullPolicy: IfNotPresentlivenessProbe:failureThreshold: 3httpGet:path: /livezport: httpsscheme: HTTPSperiodSeconds: 10name: metrics-serverports:- containerPort: 10250name: httpsprotocol: TCPreadinessProbe:failureThreshold: 3httpGet:path: /readyzport: httpsscheme: HTTPSinitialDelaySeconds: 20periodSeconds: 10resources:requests:cpu: 100mmemory: 200MisecurityContext:allowPrivilegeEscalation: falsecapabilities:drop:- ALLreadOnlyRootFilesystem: truerunAsNonRoot: truerunAsUser: 1000seccompProfile:type: RuntimeDefaultvolumeMounts:- mountPath: /tmpname: tmp-dirnodeSelector:kubernetes.io/os: linuxpriorityClassName: system-cluster-criticalserviceAccountName: metrics-servervolumes:- emptyDir: {}name: tmp-dir
---
apiVersion: apiregistration.k8s.io/v1
kind: APIService
metadata:labels:k8s-app: metrics-servername: v1beta1.metrics.k8s.io
spec:group: metrics.k8s.iogroupPriorityMinimum: 100insecureSkipTLSVerify: trueservice:name: metrics-servernamespace: kube-systemversion: v1beta1versionPriority: 100

 执行部署

     kubectl apply -f metrics-server_v0.7.2.yaml

查看metrics-server的pod运行状态

kubectl get pods -n kube-system

查看metrics-server是否部署成功

[root@master pki]# kubectl get apiservices | grep metrics
v1beta1.metrics.k8s.io    kube-system/metrics-server   False (MissingEndpoints)   78m

false表示没有获取到信息。

查看metrics-server pod日志:

E1201 08:25:10.784262       1 scraper.go:149] "Failed to scrape node" err="Get \"https://172.30.218.120:10250/metrics/resource\": tls: failed to verify certificate: x509: cannot validate certificate for 172.30.218.120 because it doesn't contain any IP SANs" node="node2"
E1201 08:25:10.793010       1 scraper.go:149] "Failed to scrape node" err="Get \"https://172.30.218.119:10250/metrics/resource\": tls: failed to verify certificate: x509: cannot validate certificate for 172.30.218.119 because it doesn't contain any IP SANs" node="master"
E1201 08:25:10.797384       1 scraper.go:149] "Failed to scrape node" err="Get \"https://172.30.218.118:10250/metrics/resource\": tls: failed to verify certificate: x509: cannot validate certificate for 172.30.218.118 because it doesn't contain any IP SANs" node="node1"
I1201 08:25:11.514112       1 server.go:191] "Failed probe" probe="metric-storage-ready" err="no metrics to serve"

日志上看是证书验证不通过,就是说metrics-server作为客户端去采集kubelet服务端的信息时,使用的时: https://172.30.218.120:10250/metrics/resource 地址,但是kubelet提供的证书中san信息是没有这个ip的,所以客户端验证服务端证书就认为这个证书不合法,因为证书里面没有这个ip信息,然后去看下kubelet服务端证书【【k8s】kubelet 的相关证书-CSDN博客】具体信息:

解决方法是: 

   1、用上面安装要求中的:  --kubelet-insecure-tls

 就是告诉metrics-server不验证 kubelet的证书。

  2、 修改配置为:- --kubelet-preferred-address-types=Hostname,InternalIP,ExternalIP

            首先为主机名,但是由于coredns没有配置hostname的ip映射,可以自己手动到coredns中添加。kubectl edit configmap coredns -n kube-system,具体怎么修改大家可以查查

查看监控信息

  效果: 在k8s中的dashboard就有了监控信息

  测试kubectl top命令的使用

     kubectl top nodes 

     

     kubectl top pods -n kube-system 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/484305.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

EasyAnimateV5 视频生成大模型原理详解与模型使用

在数字内容创作中,视频扮演的角色日益重要。然而,创作高质量视频通常耗时且昂贵。EasyAnimate 系列旨在利用人工智能技术简化这一过程。EasyAnimateV5 建立在其前代版本的基础之上,不仅在质量上有所提升,还在多模态数据处理和跨语…

泷羽sec学习打卡-shell命令7

声明 学习视频来自B站UP主 泷羽sec,如涉及侵权马上删除文章 笔记的只是方便各位师傅学习知识,以下网站只涉及学习内容,其他的都 与本人无关,切莫逾越法律红线,否则后果自负 关于shell的那些事儿-shell6 for循环while循环实践是检验真理的唯一标准 见天我们继续学习下shell中的基…

8. 一分钟读懂“代理模式”

8.1 模式介绍 代理模式是一种结构型设计模式,它通过提供一个代理对象来替代对另一个对象(真实对象)的访问。代理对象与真实对象实现相同的接口,并通过代理类对真实对象的访问进行控制,可以在调用前后执行附加操作&…

基于SpringBoot+Vue的宠物咖啡馆系统-无偿分享 (附源码+LW+调试)

目录 1. 项目技术 2. 功能菜单 3. 部分功能截图 4. 研究背景 5. 研究目的 6. 可行性分析 6.1 技术可行性 6.2 经济可行性 6.3 操作可行性 7. 系统设计 7.1 概述 7.2 系统流程和逻辑 7.3 系统结构 8. 数据库设计 8.1 数据库ER图 (1)宠物订…

Python毕业设计选题:基于大数据的淘宝电子产品数据分析的设计与实现-django+spark+spider

开发语言:Python框架:djangoPython版本:python3.7.7数据库:mysql 5.7数据库工具:Navicat11开发软件:PyCharm 系统展示 管理员登录 管理员功能界面 电子产品管理 系统管理 数据可视化分析看板展示 摘要 本…

【人工智能的深度分析与最新发展趋势】

人工智能的深度分析与最新发展趋势 引言 人工智能(AI)是现代科技的重要组成部分,它涉及模拟人类智能的算法和技术。随着计算能力的提升和数据量的激增,AI的应用正在迅速渗透到各个行业。本文将深入分析人工智能的概念、技术、应…

NLP自然语言处理——关键词提取之 TF-IDF 算法(五分钟带你深刻领悟TF-IDF算法的精髓)

🔥博客主页:是dream 🚀系列专栏:深度学习环境搭建、环境配置问题解决、自然语言处理、语音信号处理、项目开发 💘每日语录:要有最朴素的生活和最遥远🌏的梦想,即使明天天寒地冻&am…

【连接池】.NET开源 ORM 框架 SqlSugar 系列

.NET开源 ORM 框架 SqlSugar 系列 【开篇】.NET开源 ORM 框架 SqlSugar 系列【入门必看】.NET开源 ORM 框架 SqlSugar 系列【实体配置】.NET开源 ORM 框架 SqlSugar 系列【Db First】.NET开源 ORM 框架 SqlSugar 系列【Code First】.NET开源 ORM 框架 SqlSugar 系列【数据事务…

预训练模型与ChatGPT:自然语言处理的革新与前景

目录 一、ChatGPT整体背景认知 (一)ChatGPT引起关注的原因 (二)与其他公司的竞争情况 二、NLP学习范式的发展 (一)规则和机器学习时期 (二)基于神经网络的监督学习时期 &…

LeetCode - #151 颠倒字符串中的单词

文章目录 前言1. 描述2. 示例3. 答案关于我们 前言 我们社区陆续会将顾毅(Netflix 增长黑客,《iOS 面试之道》作者,ACE 职业健身教练。)的 Swift 算法题题解整理为文字版以方便大家学习与阅读。 LeetCode 算法到目前我们已经更新…

微服务即时通讯系统(5)用户管理子服务,网关子服务

用户管理子服务(user文件) 用户管理子服务也是这个项目中的一个业务最多的子服务,接口多,但是主要涉及的数据表只有user表,Redis的键值对和ES的一个搜索引擎,主要功能是对用户的个人信息进行修改管理&#…

vue结合canvas动态生成水印效果

在 Vue 项目中添加水印可以通过以下几种方式实现: 方法一:使用 CSS 直接通过 CSS 的 background 属性实现水印: 实现步骤 在需要添加水印的容器中设置背景。使用 rgba 设置透明度,并通过 background-repeat 和 background-size…

html-两个div,让一个div跟随另外一个div的高度

在开发的过程中遇到有些场景事这样的,两个div的高度不一致,而且都是动态高度,有的时候div1高,有的时候div2高,如果设置flex的话,那么就会把较矮的元素撑大,但是我想始终都以div1的高度作为基准&…

知识管理系统|基于springBoot的知识管理系统设计与实现(附项目源码+论文+数据库)

私信或留言即免费送开题报告和任务书(可指定任意题目) 目录 一、摘要 二、相关技术 三、系统设计 四、数据库设计 五、核心代码 六、论文参考 七、源码获取 一、摘要 随着信息互联网信息的飞速发展,无纸化作业变成了一种趋势…

Kruskal 算法在特定边权重条件下的性能分析及其实现

引言 Kruskal 算法是一种用于求解最小生成树(Minimum Spanning Tree, MST)的经典算法。它通过逐步添加权重最小的边来构建最小生成树,同时确保不会形成环路。在本文中,我们将探讨在特定边权重条件下 Kruskal 算法的性能,并分别给出伪代码和 C 语言实现。特别是,我们将分…

12.2深度学习_视觉处理CNN_池化层、卷积知识

3.池化层 3.1 概述 池化层 (Pooling) 降低维度, 缩减模型大小,提高计算速度. 即: 主要对卷积层学习到的特征图进行下采样(SubSampling)处理。 池化层主要有两种: 最大池化 max pooling 最大池化是从每个局部区域中选择最大值作为池化后的值…

3D数据大屏实现过程,使用echarts、Next.js

📜 本文主要内容 数据大屏自适应方案动效 echarts: 3D 立体柱状图动态流光折线图 3D 地球(飞线、柱状图)无限滚动列表 🔍 大屏效果 数据大屏: 点击预览 🕹 运行条件 next 12.3.4echarts 5.4…

WebRover :一个功能强大的 Python 库,用于从 Web 内容生成高质量的数据集,专为训练大型语言模型和 AI 应用程序而设计。

2024-11-30 ,由Area-25团队开发的一个专门用于生成高质量网络内容数据集的Python库。该数据集旨在为大型语言模型(LLM)和人工智能应用的训练提供丰富的数据资源。 数据集地址:WebRover Dataset|自然语言处理数据集|AI模型训练数据…

FlyHttp 的最佳实践:加速项目级 API 请求构建

FlyHttp的相关文章: FlyHttp 的诞生:从认识各种网络请求开始 FlyHttp 的设计思想:前端 API 自动化构建工具 FlyHttp 的使用:如何高效使用 FlyHttp,支持 JS、TS 项目 一. FlyHttp 是什么? 这是一个自动…

图像修复算法常用评估指标介绍及Python代码(PSNR/SSIM/FID)

目录 峰值信噪比PSNR(Peak Signal-to-Noise Ratio) 结构相似度SSlM(Structural Similarity Index Measurement) FID(Frchet Inception Distance) 代码实践:计算两张图片之间的PSNR和SSIM 代…