1.本周小结动态规划
周一
动态规划:不同路径 (opens new window)中求从出发点到终点有几种路径,只能向下或者向右移动一步。
我们提供了三种方法,但重点讲解的还是动规,也是需要重点掌握的。
dp[i][j]定义 :表示从(0 ,0)出发,到(i, j) 有dp[i][j]条不同的路径。
本题在初始化的时候需要点思考了,即:
dp[i][0]一定都是1,因为从(0, 0)的位置到(i, 0)的路径只有一条,那么dp[0][j]也同理。
周二
动态规划:不同路径还不够,要有障碍! (opens new window)相对于动态规划:不同路径 (opens new window)添加了障碍。
dp[i][j]定义依然是:表示从(0 ,0)出发,到(i, j) 有dp[i][j]条不同的路径。
本题难点在于初始化,如果(i, 0) 这条边有了障碍之后,障碍之后(包括障碍)都是走不到的位置了,所以障碍之后的dp[i][0]应该还是初始值0。
如图:
拿示例1来举例如题:
对应的dp table 如图:
周三
动态规划:整数拆分,你要怎么拆? (opens new window)给出一个整数,问有多少种拆分的方法。
这道题目就有点难度了,题目中dp我也给出了两种方法,但通过两种方法的比较可以看出,对dp数组定义的理解,以及dp数组初始化的重要性。
dp[i]定义:分拆数字i,可以得到的最大乘积为dp[i]。
本题中dp[i]的初始化其实也很有考究,严格从dp[i]的定义来说,dp[0] dp[1] 就不应该初始化,也就是没有意义的数值。
拆分0和拆分1的最大乘积是多少?
这是无解的。
所以题解里我只初始化dp[2] = 1,从dp[i]的定义来说,拆分数字2,得到的最大乘积是1,这个没有任何异议!
举例当n为10 的时候,dp数组里的数值,如下:
一些录友可能对为什么没有拆分j没有想清楚。
其实可以模拟一下哈,拆分j的情况,在遍历j的过程中dp[i - j]其实都计算过了。
例如 i= 10,j = 5,i-j = 5,如果把j拆分为 2 和 3,其实在j = 2 的时候,i-j= 8 ,拆分i-j的时候就可以拆出来一个3了。
或者也可以理解j是拆分i的第一个整数。
动态规划:整数拆分,你要怎么拆? (opens new window)总结里,我也给出了递推公式dp[i] = max(dp[i], dp[i - j] * dp[j])这种写法。
对于这种写法,一位录友总结的很好,意思就是:如果递推公式是dp[i-j] * dp[j],这样就相当于强制把一个数至少拆分成四份。
dp[i-j]至少是两个数的乘积,dp[j]又至少是两个数的乘积,但其实3以下的数,数的本身比任何它的拆分乘积都要大了,所以文章中初始化的时候才要特殊处理。
周四
动态规划:不同的二叉搜索树 (opens new window)给出n个不同的节点求能组成多少个不同二叉搜索树。
这道题目还是比较难的,想到用动态规划的方法就很不容易了!
dp[i]定义 :1到i为节点组成的二叉搜索树的个数为dp[i]。
递推公式:dp[i] += dp[j - 1] * dp[i - j]; ,j-1 为j为头结点左子树节点数量,i-j 为以j为头结点右子树节点数量
dp数组如何初始化:只需要初始化dp[0]就可以了,推导的基础,都是dp[0]。
n为5时候的dp数组状态如图:
2.动态规划:01背包理论基础
可以去卡码网第46题 (opens new window)去练习,题意是一样的。
思路
正式开始讲解背包问题!
对于面试的话,其实掌握01背包和完全背包,就够用了,最多可以再来一个多重背包。
如果这几种背包,分不清,我这里画了一个图,如下:
除此以外其他类型的背包,面试几乎不会问,都是竞赛级别的了,leetcode上连多重背包的题目都没有,所以题库也告诉我们,01背包和完全背包就够用了。
而完全背包又是也是01背包稍作变化而来,即:完全背包的物品数量是无限的。
所以背包问题的理论基础重中之重是01背包,一定要理解透!
leetcode上没有纯01背包的问题,都是01背包应用方面的题目,也就是需要转化为01背包问题。
所以我先通过纯01背包问题,把01背包原理讲清楚,后续再讲解leetcode题目的时候,重点就是讲解如何转化为01背包问题了。
之前可能有些录友已经可以熟练写出背包了,但只要把这个文章仔细看完,相信你会意外收获!
01 背包
有n件物品和一个最多能背重量为w 的背包。第i件物品的重量是weight[i],得到的价值是value[i] 。每件物品只能用一次,求解将哪些物品装入背包里物品价值总和最大。
这是标准的背包问题,以至于很多同学看了这个自然就会想到背包,甚至都不知道暴力的解法应该怎么解了。
这样其实是没有从底向上去思考,而是习惯性想到了背包,那么暴力的解法应该是怎么样的呢?
每一件物品其实只有两个状态,取或者不取,所以可以使用回溯法搜索出所有的情况,那么时间复杂度就是O(2^n),这里的n表示物品数量。
所以暴力的解法是指数级别的时间复杂度。进而才需要动态规划的解法来进行优化!
在下面的讲解中,我举一个例子:
背包最大重量为4。
物品为:
重量 | 价值 | |
---|---|---|
物品0 | 1 | 15 |
物品1 | 3 | 20 |
物品2 | 4 | 30 |
问背包能背的物品最大价值是多少?
以下讲解和图示中出现的数字都是以这个例子为例。
(为了方便表述,下面描述 统一用 容量为XX的背包,放下容量(重量)为XX的物品,物品的价值是XX)
二维dp数组01背包
依然动规五部曲分析一波。
- 确定dp数组以及下标的含义
我们需要使用二维数组,为什么呢?
因为有两个维度需要分别表示:物品 和 背包容量
如图,二维数组为 dp[i][j]。
那么这里 i 、j、dp[i][j] 分别表示什么呢?
i 来表示物品、j表示背包容量。
(如果想用j 表示物品,j表示背包容量 行不行? 都可以的,个人习惯而已)
我们来尝试把上面的 二维表格填写一下。
动态规划的思路是根据子问题的求解推导出整体的最优解。
我们先看把物品0 放入背包的情况:
背包容量为0,放不下物品0,此时背包里的价值为0。
背包容量为1,可以放下物品0,此时背包里的价值为15.
背包容量为2,依然可以放下物品0 (注意 01背包里物品只有一个),此时背包里的价值为15。
以此类推。
再看把物品1 放入背包:
背包容量为 0,放不下物品0 或者物品1,此时背包里的价值为0。
背包容量为 1,只能放下物品0,背包里的价值为15。
背包容量为 2,只能放下物品0,背包里的价值为15。
背包容量为 3,上一行同一状态,背包只能放物品0,这次也可以选择物品1了,背包可以放物品1 或者 物品0,物品1价值更大,背包里的价值为20。
背包容量为 4,上一行同一状态,背包只能放物品0,这次也可以选择物品1了,背包可以放下物品0 和 物品1,背包价值为35。
以上举例,是比较容易看懂,我主要是通过这个例子,来帮助大家明确dp数组的含义。
上图中,我们看 dp[1][4] 表示什么意思呢。
任取 物品0,物品1 放进容量为4的背包里,最大价值是 dp[1][4]。
通过这个举例,我们来进一步明确dp数组的含义。
即dp[i][j] 表示从下标为[0-i]的物品里任意取,放进容量为j的背包,价值总和最大是多少。
要时刻记着这个dp数组的含义,下面的一些步骤都围绕这dp数组的含义进行的,如果哪里看懵了,就来回顾一下i代表什么,j又代表什么。
- 确定递推公式
这里在把基本信息给出来:
重量 | 价值 | |
---|---|---|
物品0 | 1 | 15 |
物品1 | 3 | 20 |
物品2 | 4 | 30 |
对于递推公式,首先我们要明确有哪些方向可以推导出 dp[i][j]。
这里我们dp[1][4]的状态来举例:
求取 dp[1][4] 有两种情况:
- 放物品1
- 还是不放物品1
如果不放物品1, 那么背包的价值应该是 dp[0][4] 即 容量为4的背包,只放物品0的情况。
推导方向如图:
如果放物品1, 那么背包要先留出物品1的容量,目前容量是4,物品1 的容量(就是物品1的重量)为3,此时背包剩下容量为1。
容量为1,只考虑放物品0 的最大价值是 dp[0][1],这个值我们之前就计算过。
所以 放物品1 的情况 = dp[0][1] + 物品1 的价值,推导方向如图:
两种情况,分别是放物品1 和 不放物品1,我们要取最大值(毕竟求的是最大价值)
dp[1][4] = max(dp[0][4], dp[0][1] + 物品1 的价值)
以上过程,抽象化如下:
-
不放物品i:背包容量为j,里面不放物品i的最大价值是dp[i - 1][j]。
-
放物品i:背包空出物品i的容量后,背包容量为j - weight[i],dp[i - 1][j - weight[i]] 为背包容量为j - weight[i]且不放物品i的最大价值,那么dp[i - 1][j - weight[i]] + value[i] (物品i的价值),就是背包放物品i得到的最大价值
递归公式: dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - weight[i]] + value[i]);
- dp数组如何初始化
关于初始化,一定要和dp数组的定义吻合,否则到递推公式的时候就会越来越乱。
首先从dp[i][j]的定义出发,如果背包容量j为0的话,即dp[i][0],无论是选取哪些物品,背包价值总和一定为0。如图:
在看其他情况。
状态转移方程 dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - weight[i]] + value[i]);
可以看出i 是由 i-1 推导出来,那么i为0的时候就一定要初始化。
dp[0][j],即:i为0,存放编号0的物品的时候,各个容量的背包所能存放的最大价值。
那么很明显当 j < weight[0]
的时候,dp[0][j] 应该是 0,因为背包容量比编号0的物品重量还小。
当j >= weight[0]
时,dp[0][j] 应该是value[0],因为背包容量放足够放编号0物品。
此时dp数组初始化情况如图所示:
dp[0][j] 和 dp[i][0] 都已经初始化了,那么其他下标应该初始化多少呢?
其实从递归公式: dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - weight[i]] + value[i]); 可以看出dp[i][j] 是由左上方数值推导出来了,那么 其他下标初始为什么数值都可以,因为都会被覆盖。
初始-1,初始-2,初始100,都可以!
但只不过一开始就统一把dp数组统一初始为0,更方便一些。
如图:
- 确定遍历顺序
在如下图中,可以看出,有两个遍历的维度:物品与背包重量
那么问题来了,先遍历 物品还是先遍历背包重量呢?
其实都可以!! 但是先遍历物品更好理解。
先遍历背包,再遍历物品,也是可以的!
为什么也是可以的呢?
要理解递归的本质和递推的方向。
dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - weight[i]] + value[i]);
递归公式中可以看出dp[i][j]是靠dp[i-1][j]和dp[i - 1][j - weight[i]]推导出来的。
dp[i-1][j]和dp[i - 1][j - weight[i]] 都在dp[i][j]的左上角方向(包括正上方向),那么先遍历物品,再遍历背包的过程如图所示:
再来看看先遍历背包,再遍历物品呢,如图:
大家可以看出,虽然两个for循环遍历的次序不同,但是dp[i][j]所需要的数据就是左上角,根本不影响dp[i][j]公式的推导!
但先遍历物品再遍历背包这个顺序更好理解。
其实背包问题里,两个for循环的先后循序是非常有讲究的,理解遍历顺序其实比理解推导公式难多了。
- 举例推导dp数组
来看一下对应的dp数组的数值,如图:
最终结果就是dp[2][4]。
建议大家此时自己在纸上推导一遍,看看dp数组里每一个数值是不是这样的。
做动态规划的题目,最好的过程就是自己在纸上举一个例子把对应的dp数组的数值推导一下,然后在动手写代码!
很多同学做dp题目,遇到各种问题,然后凭感觉东改改西改改,怎么改都不对,或者稀里糊涂就改过了。
主要就是自己没有动手推导一下dp数组的演变过程,如果推导明白了,代码写出来就算有问题,只要把dp数组打印出来,对比一下和自己推导的有什么差异,很快就可以发现问题了。
本题力扣上没有原题,大家可以去卡码网第46题 (opens new window)去练习,题意是一样的。
public class zero_one_Bag_Problem {public static void main(String[] args) {Scanner scanner = new Scanner(System.in);//创建一个Scanner对象来读取用户的输入。int n = scanner.nextInt();//读取物品的数量n。int bagweight = scanner.nextInt();//读取背包的最大承重bagweight。int[] weight = new int[n];//数组weight来存储每个物品的重量。int[] value = new int[n];//数组value来存储每个物品的价值。for (int i = 0; i < n; ++i) {//循环读取每个物品的重量。weight[i] = scanner.nextInt();}for (int j = 0; j < n; ++j) {//循环读取每个物品的价值。value[j] = scanner.nextInt();}int[][] dp = new int[n][bagweight + 1];//二维数组dp来存储动态规划的中间结果。dp[i][j]表示考虑前i个物品,在不超过重量j的情况下可以获得的最大价值。for (int j = weight[0]; j <= bagweight; j++) {//初始化dp数组的第一行。如果背包的重量大于等于第一个物品的重量,那么只能选择第一个物品,否则不选择任何物品。dp[0][j] = value[0];}for (int i = 1; i < n; i++) {//外层循环遍历每个物品。for (int j = 0; j <= bagweight; j++) {//内层循环遍历背包的所有可能重量。if (j < weight[i]) {//如果当前背包重量j小于第i个物品的重量,那么不能选择第i个物品,因此最大价值与不选择第i个物品时相同。dp[i][j] = dp[i - 1][j];} else {dp[i][j] = Math.max(dp[i - 1][j], dp[i - 1][j - weight[i]] + value[i]);//如果当前背包重量j大于等于第i个物品的重量,那么有两种选择:不选择第i个物品(价值为dp[i - 1][j]),或者选择第i个物品(价值为dp[i - 1][j - weight[i]] + value[i])。选择两者中价值较大的。}}}System.out.println(dp[n - 1][bagweight]);//输出最终结果,即考虑所有物品,在不超过背包最大承重的情况下可以获得的最大价值。}
}
- 时间复杂度:
O(n * bagweight)
- 空间复杂度:
O(n * bagweight)
其中n
是物品的数量,bagweight
是背包的最大承重。
3.动态规划:01背包理论基础(滚动数组)
可以去卡码网第46题 (opens new window)去练习
思路
昨天动态规划:关于01背包问题,你该了解这些! (opens new window)中是用二维dp数组来讲解01背包。
今天我们就来说一说滚动数组,其实在前面的题目中我们已经用到过滚动数组了,就是把二维dp降为一维dp,一些录友当时还表示比较困惑。
那么我们通过01背包,来彻底讲一讲滚动数组!
接下来还是用如下这个例子来进行讲解
背包最大重量为4。
物品为:
重量 | 价值 | |
---|---|---|
物品0 | 1 | 15 |
物品1 | 3 | 20 |
物品2 | 4 | 30 |
问背包能背的物品最大价值是多少?
一维dp数组(滚动数组)
对于背包问题其实状态都是可以压缩的。
在使用二维数组的时候,递推公式:dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - weight[i]] + value[i]);
其实可以发现如果把dp[i - 1]那一层拷贝到dp[i]上,表达式完全可以是:dp[i][j] = max(dp[i][j], dp[i][j - weight[i]] + value[i]);
与其把dp[i - 1]这一层拷贝到dp[i]上,不如只用一个一维数组了,只用dp[j](一维数组,也可以理解是一个滚动数组)。
这就是滚动数组的由来,需要满足的条件是上一层可以重复利用,直接拷贝到当前层。
读到这里估计大家都忘了 dp[i][j]里的i和j表达的是什么了,i是物品,j是背包容量。
dp[i][j] 表示从下标为[0-i]的物品里任意取,放进容量为j的背包,价值总和最大是多少。
一定要时刻记住这里i和j的含义,要不然很容易看懵了。
动规五部曲分析如下:
- 确定dp数组的定义
关于dp数组的定义,我在 01背包理论基础 (opens new window)有详细讲解
在一维dp数组中,dp[j]表示:容量为j的背包,所背的物品价值可以最大为dp[j]。
- 一维dp数组的递推公式
二维dp数组的递推公式为: dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - weight[i]] + value[i]);
公式是怎么来的 在这里 01背包理论基础 (opens new window)有详细讲解。
一维dp数组,其实就上上一层 dp[i-1] 这一层 拷贝的 dp[i]来。
所以在 上面递推公式的基础上,去掉i这个维度就好。
递推公式为:dp[j] = max(dp[j], dp[j - weight[i]] + value[i]);
以下为分析:
dp[j]为 容量为j的背包所背的最大价值。
dp[j]可以通过dp[j - weight[i]]推导出来,dp[j - weight[i]]表示容量为j - weight[i]的背包所背的最大价值。
dp[j - weight[i]] + value[i]
表示 容量为 [j - 物品i重量] 的背包 加上 物品i的价值。(也就是容量为j的背包,放入物品i了之后的价值即:dp[j])
此时dp[j]有两个选择,一个是取自己dp[j] 相当于 二维dp数组中的dp[i-1][j],即不放物品i,一个是取dp[j - weight[i]] + value[i]
,即放物品i,指定是取最大的,毕竟是求最大价值。
相对于二维dp数组的写法,就是把dp[i][j]中i的维度去掉了。
- 一维dp数组如何初始化
关于初始化,一定要和dp数组的定义吻合,否则到递推公式的时候就会越来越乱。
dp[j]表示:容量为j的背包,所背的物品价值可以最大为dp[j],那么dp[0]就应该是0,因为背包容量为0所背的物品的最大价值就是0。
那么dp数组除了下标0的位置,初始为0,其他下标应该初始化多少呢?
看一下递归公式:dp[j] = max(dp[j], dp[j - weight[i]] + value[i]);
dp数组在推导的时候一定是取价值最大的数,如果题目给的价值都是正整数那么非0下标都初始化为0就可以了。
这样才能让dp数组在递归公式的过程中取的最大的价值,而不是被初始值覆盖了。
那么我假设物品价值都是大于0的,所以dp数组初始化的时候,都初始为0就可以了。
- 一维dp数组遍历顺序
和二维dp的写法中,遍历背包的顺序是不一样的!
二维dp遍历的时候,背包容量是从小到大,而一维dp遍历的时候,背包是从大到小。
为什么呢?
倒序遍历是为了保证物品i只被放入一次!。但如果一旦正序遍历了,那么物品0就会被重复加入多次!
举一个例子:物品0的重量weight[0] = 1,价值value[0] = 15
如果正序遍历
dp[1] = dp[1 - weight[0]] + value[0] = 15
dp[2] = dp[2 - weight[0]] + value[0] = 30
此时dp[2]就已经是30了,意味着物品0,被放入了两次,所以不能正序遍历。
为什么倒序遍历,就可以保证物品只放入一次呢?
倒序就是先算dp[2]
dp[2] = dp[2 - weight[0]] + value[0] = 15 (dp数组已经都初始化为0)
dp[1] = dp[1 - weight[0]] + value[0] = 15
所以从后往前循环,每次取得状态不会和之前取得状态重合,这样每种物品就只取一次了。
那么问题又来了,为什么二维dp数组遍历的时候不用倒序呢?
因为对于二维dp,dp[i][j]都是通过上一层即dp[i - 1][j]计算而来,本层的dp[i][j]并不会被覆盖!
(如何这里读不懂,大家就要动手试一试了,空想还是不靠谱的,实践出真知!)
再来看看两个嵌套for循环的顺序,代码中是先遍历物品嵌套遍历背包容量,那可不可以先遍历背包容量嵌套遍历物品呢?
不可以!
因为一维dp的写法,背包容量一定是要倒序遍历(原因上面已经讲了),如果遍历背包容量放在上一层,那么每个dp[j]就只会放入一个物品,即:背包里只放入了一个物品。
所以一维dp数组的背包在遍历顺序上和二维其实是有很大差异的!,这一点大家一定要注意。
- 举例推导dp数组
一维dp,分别用物品0,物品1,物品2 来遍历背包,最终得到结果如下:
倾向于使用一维dp数组的写法,比较直观简洁,而且空间复杂度还降了一个数量级!
总结
本文中的题目,要求先实现一个纯二维的01背包,如果写出来了,然后再问为什么两个for循环的嵌套顺序这么写?反过来写行不行?再讲一讲初始化的逻辑。
然后要求实现一个一维数组的01背包,最后再问,一维数组的01背包,两个for循环的顺序反过来写行不行?为什么?
注意以上问题都是在候选人把代码写出来的情况下才问的。
就是纯01背包的题目,都不用考01背包应用类的题目就可以看出候选人对算法的理解程度了。
相信大家读完这篇文章,应该对以上问题都有了答案!
此时01背包理论基础就讲完了,我用了两篇文章把01背包的dp数组定义、递推公式、初始化、遍历顺序从二维数组到一维数组统统深度剖析了一遍,没有放过任何难点。
大家可以发现其实信息量还是挺大的。
如果把动态规划:关于01背包问题,你该了解这些! (opens new window)和本篇的内容都理解了,后面我们在做01背包的题目,就会发现非常简单了。
不用再凭感觉或者记忆去写背包,而是有自己的思考,了解其本质,代码的方方面面都在自己的掌控之中。
即使代码没有通过,也会有自己的逻辑去debug,这样就思维清晰了。
public class zero_one_Bag_Problem_rolling_array {public static void main(String[] args) {Scanner scanner = new Scanner(System.in);//创建一个Scanner对象来读取用户的输入。int M = scanner.nextInt();//读取物品的数量M。int N = scanner.nextInt();//读取背包的最大承重N。int[] costs = new int[M];//数组costs来存储每个物品的重量。int[] values = new int[M];//数组values来存储每个物品的价值。for (int i = 0; i < M; i++) {//循环读取每个物品的重量。costs[i] = scanner.nextInt();}for (int j = 0; j < M; j++) {//循环读取每个物品的价值。values[j] = scanner.nextInt();}int[] dp = new int[N + 1];//一维数组dp来存储动态规划的中间结果。dp[j]表示考虑所有物品,在不超过重量j的情况下可以获得的最大价值。for (int i = 0; i < M; i++) {//外层循环遍历每个物品。for (int j = N; j >= costs[i]; j--) {//内层循环从背包的最大承重N开始向下遍历到当前物品的重量costs[i]。dp[j] = Math.max(dp[j], dp[j - costs[i]] + values[i]);//对于每个重量j,我们比较不选择第i个物品和选择第i个物品的情况。如果选择第i个物品可以获得更大的价值,则更新dp[j]。}}System.out.println(dp[N]);//输出最终结果,即考虑所有物品,在不超过背包最大承重的情况下可以获得的最大价值。scanner.close();//关闭Scanner对象。}
}
- 时间复杂度:
O(M * N)
- 空间复杂度:
O(N)
4.
分割等和子集
力扣题目链接(opens new window)
题目难易:中等
给定一个只包含正整数的非空数组。是否可以将这个数组分割成两个子集,使得两个子集的元素和相等。
注意: 每个数组中的元素不会超过 100 数组的大小不会超过 200
示例 1:
- 输入: [1, 5, 11, 5]
- 输出: true
- 解释: 数组可以分割成 [1, 5, 5] 和 [11].
示例 2:
- 输入: [1, 2, 3, 5]
- 输出: false
- 解释: 数组不能分割成两个元素和相等的子集.
提示:
- 1 <= nums.length <= 200
- 1 <= nums[i] <= 100
思路
这道题目初步看,和如下两题几乎是一样的,大家可以用回溯法,解决如下两题
- 698.划分为k个相等的子集
- 473.火柴拼正方形
这道题目是要找是否可以将这个数组分割成两个子集,使得两个子集的元素和相等。
那么只要找到集合里能够出现 sum / 2 的子集总和,就算是可以分割成两个相同元素和子集了。
本题是可以用回溯暴力搜索出所有答案的,但最后超时了,也不想再优化了,放弃回溯,直接上01背包吧。
如果对01背包不够了解,建议仔细看完如下两篇:
- 动态规划:关于01背包问题,你该了解这些!(opens new window)
- 动态规划:关于01背包问题,你该了解这些!(滚动数组)(opens new window)
01背包问题
背包问题,大家都知道,有N件物品和一个最多能背重量为W 的背包。第i件物品的重量是weight[i],得到的价值是value[i] 。每件物品只能用一次,求解将哪些物品装入背包里物品价值总和最大。
背包问题有多种背包方式,常见的有:01背包、完全背包、多重背包、分组背包和混合背包等等。
要注意题目描述中商品是不是可以重复放入。
即一个商品如果可以重复多次放入是完全背包,而只能放入一次是01背包,写法还是不一样的。
要明确本题中我们要使用的是01背包,因为元素我们只能用一次。
回归主题:首先,本题要求集合里能否出现总和为 sum / 2 的子集。
那么来一一对应一下本题,看看背包问题如何来解决。
只有确定了如下四点,才能把01背包问题套到本题上来。
- 背包的体积为sum / 2
- 背包要放入的商品(集合里的元素)重量为 元素的数值,价值也为元素的数值
- 背包如果正好装满,说明找到了总和为 sum / 2 的子集。
- 背包中每一个元素是不可重复放入。
以上分析完,我们就可以套用01背包,来解决这个问题了。
动规五部曲分析如下:
- 确定dp数组以及下标的含义
01背包中,dp[j] 表示: 容量为j的背包,所背的物品价值最大可以为dp[j]。
本题中每一个元素的数值既是重量,也是价值。
套到本题,dp[j]表示 背包总容量(所能装的总重量)是j,放进物品后,背的最大重量为dp[j]。
那么如果背包容量为target, dp[target]就是装满 背包之后的重量,所以 当 dp[target] == target 的时候,背包就装满了。
有录友可能想,那还有装不满的时候?
拿输入数组 [1, 5, 11, 5],举例, dp[7] 只能等于 6,因为 只能放进 1 和 5。
而dp[6] 就可以等于6了,放进1 和 5,那么dp[6] == 6,说明背包装满了。
- 确定递推公式
01背包的递推公式为:dp[j] = max(dp[j], dp[j - weight[i]] + value[i]);
本题,相当于背包里放入数值,那么物品i的重量是nums[i],其价值也是nums[i]。
所以递推公式:dp[j] = max(dp[j], dp[j - nums[i]] + nums[i]);
- dp数组如何初始化
在01背包,一维dp如何初始化,已经讲过,
从dp[j]的定义来看,首先dp[0]一定是0。
如果题目给的价值都是正整数那么非0下标都初始化为0就可以了,如果题目给的价值有负数,那么非0下标就要初始化为负无穷。
这样才能让dp数组在递推的过程中取得最大的价值,而不是被初始值覆盖了。
本题题目中 只包含正整数的非空数组,所以非0下标的元素初始化为0就可以了。
- 确定遍历顺序
在动态规划:关于01背包问题,你该了解这些!(滚动数组) (opens new window)中就已经说明:如果使用一维dp数组,物品遍历的for循环放在外层,遍历背包的for循环放在内层,且内层for循环倒序遍历!
- 举例推导dp数组
dp[j]的数值一定是小于等于j的。
如果dp[j] == j 说明,集合中的子集总和正好可以凑成总和j,理解这一点很重要。
用例1,输入[1,5,11,5] 为例,如图:
最后dp[11] == 11,说明可以将这个数组分割成两个子集,使得两个子集的元素和相等。
总结
这道题目就是一道01背包应用类的题目,需要我们拆解题目,然后套入01背包的场景。
01背包相对于本题,主要要理解,题目中物品是nums[i],重量是nums[i],价值也是nums[i],背包体积是sum/2。
看代码的话,就可以发现,基本就是按照01背包的写法来的。
public class Partition_Equal_Subset_Sum_Problem {public boolean canPartition(int[] nums) {//接受一个整数数组nums作为参数,并返回一个布尔值,表示是否可以将数组分成两个子集,使得这两个子集的元素之和相等。if(nums == null || nums.length == 0) return false;//如果数组为空或不存在,则返回false。int n = nums.length;int sum = 0;//变量sum来存储数组中所有元素的总和。for(int num : nums) {sum += num;}if(sum % 2 != 0) return false;//如果总和不是偶数,则不可能将数组分成两个等和子集,返回false。int target = sum / 2;//将总和除以2,得到目标和,即每个子集需要达到的和。int[] dp = new int[target + 1];//一维数组dp,大小为目标和加1,用于存储动态规划的中间结果。dp[j]表示是否可以达到和j。for(int i = 0; i < n; i++) {//遍历整数数组nums中的每个元素for(int j = target; j >= nums[i]; j--) {//从target(目标和,即数组总和的一半)开始,向下遍历到当前元素nums[i]的值。倒序遍历的原因是为了避免在同一轮中重复使用同一个元素。dp[j] = Math.max(dp[j], dp[j - nums[i]] + nums[i]);//更新动态规划数组dp。对于每个j,我们考虑两种情况:不使用当前元素nums[i],dp[j]保持不变。使用当前元素nums[i],那么新的和为dp[j - nums[i]] + nums[i]。dp[j]被更新为这两种情况中的最大值。这样做是为了确保我们总是保留达到和j的最大可能值。}if(dp[target] == target)//检查dp[target]是否等于target。如果是,这意味着我们已经找到了一个和为target的子集,因此可以提前返回true。return true;}return dp[target] == target;//遍历完所有元素后,如果dp[target]等于target,这意味着我们成功地找到了一个和为target的子集,因此返回true。否则,返回false。}}
-
- 时间复杂度:
O(n * target)
- 空间复杂度:
O(target)
或O(sum)
- 时间复杂度:
public class Partition_Equal_Subset_Sum_Problem {public static boolean canPartition2(int[] nums) {int len = nums.length;int sum = 0;for (int num : nums) {sum += num;}if ((sum %2 ) != 0) {return false;}int target = sum / 2;boolean[][] dp = new boolean[len][target + 1];//数组dp的大小为len行(每个物品一个状态)和target + 1列(从0到目标和的所有可能和)。if (nums[0] <= target) {//如果数组的第一个元素小于或等于目标和,那么我们可以设置dp[0][nums[0]]为true,因为只使用第一个元素就可以达到和nums[0]。dp[0][nums[0]] = true;}for (int i = 1; i < len; i++) {//外层循环遍历每个物品(从第二个开始)for (int j = 0; j <= target; j++) {//内层循环遍历从 0 到 target 的所有可能和。dp[i][j] = dp[i - 1][j];//初始化当前状态为不选择当前物品的状态。 当前行的dp[i][j]值初始化为上一行的dp[i - 1][j]值,表示不选择当前物品i。if (nums[i] == j) {//如果当前物品的值等于j,则dp[i][j]为true。dp[i][j] = true;continue;}if (nums[i] < j) {//如果当前物品的值小于 j ,则可以选择当前物品或不选择,更新 dp[i][j] 的值。=dp[i][j] = dp[i - 1][j] || dp[i - 1][j - nums[i]];}}}for (int i = 0; i < len; i++) {//打印出 dp 数组的内容,便于调试和理解每个状态的值。 for (int j = 0; j <= target; j++) {System.out.print(dp[i][j]+" ");}System.out.println();}return dp[len - 1][target];//考虑所有物品时,是否可以达到目标和 target 。 }}
-
- 时间复杂度:
O(n * target)
- 空间复杂度:
O(n * target)
- 时间复杂度:
public class Partition_Equal_Subset_Sum_Problem {public boolean canPartition3(int[] nums) {int len = nums.length;if(len == 0)return false;int sum = 0;for (int num : nums)sum += num;if(sum % 2 == 1)return false;int target = sum / 2;int[][] dp = new int[nums.length][target + 1];//一个二维数组 dp ,大小为 len x (target + 1) 。 dp[i][j] 表示前 i 个元素能否达到和为 j 。for(int j = nums[0]; j <= target; j++){//初始化第一行:如果第一个元素小于或等于 target ,那么可以用第一个元素填充 dp[0][j] 。dp[0][j] = nums[0];}for(int i = 1; i < len; i++){// 外层循环遍历每个物品(从第二个开始)。for(int j = 0; j <= target; j++){//内层循环遍历从 0 到 target 的所有可能和。 if (j < nums[i])//果当前和 j 小于当前物品 nums[i] ,则不能选择该物品, dp[i][j] 继承上一行的值。dp[i][j] = dp[i - 1][j];else//如果当前和 j 大于等于当前物品 nums[i] ,则可以选择或不选择当前物品,取两者中的最大值。 dp[i][j] = Math.max(dp[i - 1][j], dp[i - 1][j - nums[i]] + nums[i]);}}return dp[len - 1][target] == target;//最后返回 dp[len - 1][target] == target ,即检查是否可以用所有物品达到目标和 target 。 }}
-
- 时间复杂度:
O(n * target)
- 空间复杂度:
O(n * target)
- 时间复杂度: