计算机网络之网络层超详细讲解

个人主页:C++忠实粉丝
欢迎 点赞👍 收藏✨ 留言✉ 加关注💓本文由 C++忠实粉丝 原创

计算机网络之网络层超详细讲解

收录于专栏【计算机网络】
本专栏旨在分享学习计算机网络的一点学习笔记,欢迎大家在评论区交流讨论💌 
  

目录

网络层

IP 协议 

基本概念 

协议头格式 

网段划分 

特殊的 IP 地址 

IP 地址的数量限制

私有 IP 地址和公网 IP 地址 

路由 


网络层

在复杂的网络环境中确定一个合适的路径.

IP 协议 

基本概念 

主机 : 配有 IP 地址, 但是不进行路由控制的设备.

路由器 : 即配有 IP 地址, 又能进行路由控制;

节点 : 主机和路由器的统称. 

协议头格式 

4位版本号 (version) : 指定 IP 协议的版本, 对于 IPv4 来说, 就是4

4位头部长度 (header length) : IP 头部的长度是多少个 32 bit, 也就是 length 4 的字节数, 4bit 标识最大的数字是 15, 因此 IP 头部最大长度是 60 字节 

8位服务类型 (Type Of Service) : 3位优先权字段 (已经弃用), 4位 TOS 字段, 和1位保留字段 (必须置为0), 4位 TOS 分别表示 : 最小延时, 最大吞吐量, 最高可靠性, 最小成本, 这四者相互冲突, 只能选择一个, 对于 ssh/telnet 这样的应用程序, 最小延时比较重要, 对于 ftp 这样的程序, 最大吞吐量比较重要

16位总长度 (total length) : IP 数据报整体占多少个字节.

16位标识 (id) : 唯一的标识主机发送的报文, 如果 IP 报文在数据链路层被分片了, 那么每一个片里面的这个 id 都是相同的.

3位标志字段 : 第一位保留 (保留的意思是现在不用, 但是还没想好说不定以后要用到), 第二位置为1表示禁止分片, 这时候如果报文长度超过 MTU, IP 模块就会丢弃报文, 第三位表示 "更多分片", 如果分片了的话,  最后一个分片位置为0, 其他是1, 类似于一个结束标志

13位分片偏移 (framegament offset)  : 是分片相对于原始 IP 报文开始处的偏移. 其实就是在表示当前分片在原报文中处在哪个位置, 实际偏移的字节数是这个值 /8 得到的. 因此, 除了最后一个报文之外, 其他报文的长度必须是 8 的整数倍 (否则报文就不连续了)

8位生存时间(Time To Live TTL) : 数据报到达目的地的最大报文跳数, 一般是64, 每次经过一个路由, TTL -= 1, 一直减到0还没到达, 那么就丢弃了, 这个字段主要是用来防止出现路由循环

8位协议 : 表示上层协议的类型

16位头部校验和 : 使用 CRC 进行校验, 来鉴别头部时候损坏.

32位源地址和32位目标地址 : 表示发送端和接收端

选项字段 (不定长, 最多40字节)

网段划分 

IP 地址分为两个部分, 网络号和主机号

网络号 : 保证相互连接的两个网段具有不同的标识

主机号 : 同一网段, 主机之间具有相同的网络号, 但是必须有不同的主机号. 

不同的子网其实就是把网络号相同的主机放到一起.

如果在子网中新增一台主机, 则这台主机的网络号和这个子网的网络号一致, 但是主机号必须不能和子网中的其他主机重复

通过合理设置主机号和网络号, 就可以保证相互连接的网络中, 每台主机的 IP 地址都不相同. 

那么问题来了, 手动管理子网内的 IP, 是一个相当麻烦的事情.

有一种技术叫做 DHCP, 能够自动的给子网内新增主机节点分配 IP 地址, 避免了手动管理 IP 的不便.

一般的路由器都带有 DHCP 功能, 因此路由器也可以看做一个 DHCP 服务器.

过去曾经提出一种划分网络号和主机号的方案, 把所有 IP 地址分为五类, 如下图所示 (手绘, 细节问题多多包容)

A类 : 0.0.0.0 到 127.255.255.255

B类 : 128.0.0.0 到 191.255.255.255

C类 : 192.0.0.0 到 223.255.255.255

D类 : 224.0.0.0 到 239.255.255.255

E类 : 240.0.0.0 到 247.255.255.255

随着Internet 的飞速发展, 这种划分方案的局限性很快显现出来了, 大多数组织都申请 B类网络地址, 导致 B 类地址很快就分配完了, 而 A 类却浪费了大量地址

例如, 申请一个B类地址, 理论上一个子网内能允许6万5千多个主机, A类地址的子网内的主机数更多.

然而实际网络架设中, 不会存在一个子网内有这么多的情况, 因此大量的 IP 地址都被浪费掉了

针对这种情况提出了新的划分方案, 称为 CIDR (Classless Interdomain Routing):

引入一个额外的子网掩码 (subnet mask) 来区分网络号和主机号

子网掩码也是一个32位正整数, 通常用一串 "0" 结尾

将 IP 地址和子网掩码进行 "按位与" 操作, 得到的结果就是网络号.

网络号和主机号的划分这个 IP 地址是 A 类, B类还是 C类无关. 

下面举两个例子

IP地址140.252.20.688C FC 14 44
子网掩码255.255.255.0FF FF FF 00
网络号140.252.20.08C FC 14 00
子网地址范围140.252.2.0 ~ 140.252.20.255
IP 地址140.252.20.68

8C FC 14 44

子网掩码255.255.255.240FF FF FF F0
网络号140.252.20.648C FC 14 40
子网地址范围140.252.20.64 ~ 140.252.20.79

子网掩码与网络号的关系

子网掩码用于确定网络号的主机号的划分. 子网掩码中连续的 1 表示网络号部分, 连续的 0 表示主机号部分.

在第一个例子中, 子网掩码是 255.255.255.0, 对应的二进制是 : 
11111111, 11111111, 11111111, 00000000. 这意味着前 24 位是网络号, 后 8 位是主机号.

在第二个例子中, 子网掩码是 255.255.255.240, 对应的二进制是 : 

11111111.11111111.11111111.11110000. 这意味着前 28 位是网络号, 后 4 位是主机号

那么第一个例子 : 

网络号是 140.252.20.0, 主机号部分有 8 位

主机号全 0 时是网络地址 : 140.252.20.0

主机号全为 1 时是广播地址 : 140.252.20.255

子网地址范围是 140.252.20.0 ~ 140.252.20.255 (除去网络地址和广播地址, 实际可用的主机地址范围是 140.252.30.1 ~ 140.252.20.254)

第二个例子 : 

网络号是 140.252.20.64, 主机号部分有 4 位

主机号全 0 时是网络地址 : 140.252.20.64

主机号全为 1 时是广播地址 : 140.252.20.79

子网地址范围是 140.252.20.64 ~ 140.252.20.79 (除去网络地址和广播地址, 实际可用的主机地址范围是 140.252.30.65 ~ 140.252.20.78)

可见, IP 地址与子网掩码做与运算可以得到网络号, 主机号从全0到全1就是子网的地址范围 : 

IP 地址和子网掩码还有一种简洁的表示方法, 例如 140.252.20.68/24, 表示 IP 地址为 140.252.20.68, 子网掩码的高24位是1, 也就是 255,255,255.0 

特殊的 IP 地址 

将 IP 地址中的主机地址全部设为0, 就成为了网络号, 代表这个局域网

将 IP 地址中的主机地址全部设为1, 就成为了广播地址, 用于给同一个链路中相互连接的所有主机发送数据包

127.* 的 IP 地址用于本机环回 (loop back) 测试, 通常是 127.0.0.1 

IP 地址的数量限制

我们知道, IP 地址 (IPv4) 是一个 4字节32位的正整数, 那么移动只有2的32次方个 IP 地址, 大概是 43 亿左右, 而 TCP/IP 协议规定, 每个主机都需要有一个 IP 地址

这意味着, 一共只有 43 亿台主机能接入网络吗?

实际上, 由于一些特殊的 IP 地址的存在, 数量远不足 43 亿, 另外 IP 地址并非是按照主机台数来配置的, 而是每一个网卡都需要配置一个或多个 IP 地址

CIDR 在一定程度上缓解了 IP 地址不够用的问题 (提高了利用率, 减少了浪费, 但是 IP 地址的绝对上限并没有增加), 仍然不是很够用, 这时候有三种方式来解决 : 

动态分配 IP 地址 : 只给接入网络的设备分配 IP 地址, 因此同一个 MAC 地址的设备, 每次接入互联网中, 得到的 IP 地址不一定是相同的.

NAT 技术 : (后面详细讲解~)

IPv6 : IPv6 并不是 IPv4 的简单升级版, 这是互不相干的两个协议, 彼此并不兼容, IPv6 用16字节128位来表示一个 IP 地址, 但是目前 IPv6 还没有普及.

私有 IP 地址和公网 IP 地址 

如果一个组织内部组建局域网, IP 地址只用于局域网内的通信, 而不直接连到 Iternet 上, 理论上使用任意的 IP 地址都可以, 但是 RFC 1918 规定了用于组建局域网的私有 IP 地址

10.* 前8位是网络号, 共 16,777,216 个地址

172.16* 到 172.31.*, 前 12 位是网络号, 共 1,028,576 个地址

192.168.*, 前 16 位是网络号, 共 65536 个地址

包含在这个范围中的, 都成为私有 IP, 其余的则称为全局 IP (或公网 IP)

一个路由器可以配置两个 IP 地址, 一个是 WAN 口 IP , 一个是 LAN 口 IP (子网 IP)

路由器 LAN 口连接的主机, 都从属于当前这个路由器的子网中

不同的路由器, 子网 IP 其实都是一样的 (通常是 192.168.1.1) 子网内的主机 IP 地址不能重复, 但是子网之间的 IP 地址就可以重复了.

每一个家用路由器, 其实又作为运营商路由器的子网中的一个节点, 这样的运营商路由器可能会有很多级, 最外层的运营商路由器, WAN 口 IP 就是一个公网 IP 了.

子网内的主机需要和外网进行通信时, 路由器将 IP 首部中的 IP 地址进行替换 (替换成 WAN 口 IP), 这样逐级替换, 最终数据包中的 IP 地址成为一个公网 IP, 这种技术称为 NAT (NetWork Address Transiation, 网络地址转换)

如果希望我们自己实现的服务器程序, 能够在公网上被访问到, 就需要把程序部署在一台具有外网 IP 的服务器上, 这样的而服务器可以在阿里云/腾讯云上进行购买.

路由 

在复杂的网络结构中, 找出一条通往重点的路线;

路由的过程, 就是这样一跳一跳 (Hop by Hop) "问路" 的过程.

所谓 "一跳" 就是数据链路层中的一个区间, 具体在以太网中指从源 MAC 地址到目的 MAC 地址之间的帧传输区间. 

IP 数据包的传输过程也和问路一样.

当 IP 数据包, 到达路由器时, 路由器会先查看目的 IP

路由器决定这个数据包是直接发送给目标主机, 还是需要发送给下一个路由器

依次反复, 一直到达目标 IP 地址了. 

那么如何判定当前这个数据包发送到哪里呢? 这个就依靠每个节点内部维护一个路由表; 

路由表可以使用 route 命令查看

如果目的 IP 命中了路由表, 及直接转发即可

路由表中的最后一行, 主要由下一跳地址和发送接口两部分组成, 当目的地址与路由表中其它都不匹配时, 就按缺省路由条目规定的接口发送到下一跳地址.

假设某主机上的网络接口配置和路由表如下: 
 

DestinationGetwayGenmaskFlagsMetricRefUse Iface
192.168.10.0*255,255,255.0U000 eth0
192.168.56.0*255.255.255.0U000 eth1
127.0.0.0*255.0.0.0000 lo
default192.168.10.10.0.0.0UG000 eth0

这台主机由两个网络接口, 一个网络接口连到 192.168.10.0/24网络, 另一个网络接口连到 192.168.56.0/24 网络

路由表 Destination 是目的网络地址, Genmask 是子网掩码, Gateway 是下一跳地址, Iface 是发送接口, Flags 中的 U 标志标识此条目有效 (可以禁用某些条目), G 标志表示此条目的下一跳地址是某个路由器的地址, 没有 G 标志的条目表示目的网络地址是与本机接口直接相连的网络, 不必经路由器转发

转发过程例1 : 如果要发送的数据包的目的地址是 192.168.56.3

跟第一行的子网掩码做与运算得到 192.168.56.0, 与第一行的目的网络地址不符

再跟第二行的子网掩码做与运算得到 192.168.56.0, 正是第二行的目的网络地址, 因此从 eth1 接口发送出去

由于 192.168.56.0/24 正是与 eth1 接口直接相连的网络, 因此可以直接发到目的的主机, 不需要经路由器转发 

转发过程例2 : 如果要发送的数据包的目的地址是 202.10.1.2 

依次和路由表前几项进行对比, 发现都不匹配

按缺省路由条目, 从 eth0 接口发出去, 发往 192.168.10.1 路由器

由 192.168.10.1 路由器根据它的路由表决定下一跳

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/488801.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

嵌入式驱动开发详解6(RTC)

文章目录 前言RTC简介RTC驱动分析RTC驱动框架RTC驱动实现 RTC应用后续 前言 实时时钟是很常用的一个外设,通过实时时钟我们就可以知道年、月、日和时间等信息。 因此在需要记录时间的场合就需要实时时钟,可以使用专用的实时时钟芯片来完成此功能&#x…

什么是MAC地址?什么是IP地址?IP地址与MAC地址是什么关系?

MAC地址是指Media Access Control Address,媒体访问控制地址。MAC地址被烧录在网络设备的ROM之内, IP地址类似于门牌号码,有了门牌号码,邮差才知道把邮件投送到哪里。 有人新建房屋了,就会分配新的门牌号码&#xff08…

go语言的成神之路-标准库篇-os标准库

一、权限 在操作系统(OS)中,标准库的权限管理是非常重要的,它确保了不同用户和进程能够安全地访问系统资源。以下是一些常见的权限概念和说明: 1.用户权限 用户ID(UID):每个用户在…

ASP.NET|日常开发中连接Sqlite数据库详解

ASP.NET|日常开发中连接Sqlite数据库详解 前言一、安装和引用相关库1.1 安装 SQLite 驱动1.2 引用命名空间 二、配置连接字符串2.1 连接字符串的基本格式 三、建立数据库连接3.1 创建连接对象并打开连接 四、执行数据库操作4.1 创建表(以简单的用户表为例…

机器学习:监督学习、无监督学习

1. 引言 机器学习是一种人工智能领域的技术,它旨在让计算机通过学习数据和模式,而不是明确地进行编程来完成任务。 机器学习分为监督学习、无监督学习、半监督学习、强化学习 四种。 ​ 2. 监督学习 2.1 什么是监督学习 定义:根据已有的数…

IEEE T-RO 软体机器人手指状态估计实现两栖触觉传感

摘要:南方科技大学戴建生院士、林间院士、万芳老师、宋超阳老师团队近期在IEEE T-RO上发表了关于软体机器人手指在两栖环境中本体感知方法的论文。 近日,南方科技大学戴建生院士、林间院士、万芳老师、宋超阳老师团队在机器人顶刊IEEE T-RO上以《Propri…

MySQL-DML之数据表操作

文章目录 一. 插入表记录1. 向表中插入部分字段2. 向表中插入所有字段,字段的顺序为创建表时的顺序3. 一次添加多条数据信息 二. 更新表记录1. 更新所有记录的指定字段2. 更新符号条件记录的指定字段 三. 删除表记录1. 按条件删除记录2. 清空记录 四. SQL约束1. 主键约束① 添加…

Exp 智能协同管理系统前端首页框架开发

一、 需求分析 本案例的主要目标是开发一个智能学习辅助系统的前端界面,涵盖以下功能模块: 首页:显示系统的总体概览和关键功能介绍。 班级学员管理:实现班级管理和学员管理。 系统信息管理:管理部门和员工信息。 …

5G中的ATG Band

Air to Ground Networks for NR是R18 NR引入的。ATG很多部分和NTN类似中的内容类似。比较明显不同的是,NTN的RF内容有TS 38.101-5单独去讲,而ATG则会和地面网络共用某些band,这部分在38.101-1中有描述。 所以会存在ATG与地面网络之间的相邻信…

MongoDB与阿里云庆祝合作五周年,展望AI赋能新未来

12月3日,在印尼举行的阿里云合作伙伴大会2024上,MongoDB荣膺阿里云“2024技术创新成就奖”,该奖项旨在表彰与阿里云保持长期稳定合作,通过深度技术融合,在产品技术创新、行业区域深耕等领域取得卓越成就的伙伴。自2019…

未来已来:人工智能如何重塑我们的生活与工作

引言 未来的生活和工作场景正从想象走向现实。想象一下,一个清晨,语音助手已经为你安排好一天的任务,自动驾驶汽车准时送你上班,智能冰箱提醒你需要补充的食材。曾经只存在于科幻小说中的场景,如今正在我们的身边实现。…

苹果全家桶接入ChatGPT,近屿智能邀您共绘AI蓝图

北京时间12月12日凌晨,OpenAI开启了备受瞩目的第五天技术直播。宣布了一个令人振奋的消息:苹果的iPhone、iPad、Mac以及智能助手Siri可以原生使用ChatGPT。 这一合作无疑为生成式AI赛道注入了新的活力,作为全球科技行业的巨头,苹果…

企业级日志分析系统ELK之ELK概述

ELK 概述 ELK 介绍 什么是 ELK 早期IT架构中的系统和应用的日志分散在不同的主机和文件,如果应用出现问题,开发和运维人员想排 查原因,就要先找到相应的主机上的日志文件再进行查找和分析,所以非常不方便,而且还涉及…

安全攻击平台介绍

目录 XSS攻击平台 Attack API BeEF XSS-Proxy 漏洞平台 cnvd 阿里云漏洞库 攻防演练平台 XCTF 攻防平台 零日靶场(0ops) 安恒靶场(赛宁安全) XSS攻击平台 XSS Payload如此强大,为了使用方便,有安…

计算机毕业设计Python+Vue.js游戏推荐系统 Steam游戏推荐系统 Django Flask 游 戏可视化 游戏数据分析 游戏大数据 爬虫 机

温馨提示:文末有 CSDN 平台官方提供的学长联系方式的名片! 温馨提示:文末有 CSDN 平台官方提供的学长联系方式的名片! 温馨提示:文末有 CSDN 平台官方提供的学长联系方式的名片! 作者简介:Java领…

【电机控制器】FM33LF015芯片——FLASH模拟EEPROM

【电机控制器】FM33LF015芯片——FLASH模拟EEPROM 文章目录 [TOC](文章目录) 前言一、概述二、代码三、实验四、参考资料总结 前言 使用工具: 1.ARM仿真器/J-OBV2仿真器 提示:以下是本篇文章正文内容,下面案例可供参考 一、概述 二、代码 …

算法日记48 day 图论(拓扑排序,dijkstra)

今天继续图论章节,主要是拓扑排序和dijkstra算法。 还是举例说明。 题目:软件构建 117. 软件构建 (kamacoder.com) 题目描述 某个大型软件项目的构建系统拥有 N 个文件,文件编号从 0 到 N - 1,在这些文件中,某些文件…

物联网安全-ARMv8-M Trustzone 实操

前言 本文针对ARMv8m架构M23/M33 MCU安全特性使用进行介绍,以nxp LPC55xx系列和STM32L5xx系列为例,为大家阐述如何使用Trustzone技术提高物联网设备安全性,适合有一定平台安全基础的物联网设备开发人员、安全方案开发人员。 背景 为了提升平台安全性,ARM推出了ARMv8m架构…

若依集成Uflo2工作流引擎

文章目录 1. 创建子模块并添加依赖1.1 新建子模块 ruoyi-uflo1.2 引入 Uflo2 相关依赖 2. 配置相关 config2.1 配置 ServletConfig2.2 配置 UfloConfig2.3 配置 TestEnvironmentProvider 3. 引入Uflo配置文件4. 启动并访问 Uflo2 是由 BSTEK 自主研发的一款基于 Java 的轻量级工…

linux启动流程

linux 启动详细流程 启动流程主要分为四个阶段:BIOS与UEFI->bootloader->kernel->busybox()init,下面从这四个方面展开 BIOS与UEFI 由于计算机启动是一个很矛盾的过程,即必须先运行程序,然后计算机才能启动,但是计算机不…