自动驾驶控制算法-横向误差微分方程LQR前馈控制

本文是学习自动驾驶控制算法第六讲 前馈控制与航向误差以及前两节的学习笔记。

1 横向误差微分方程

以规划的轨迹作为自然坐标系,计算自车在轨迹上的投影点,进而计算误差:
在这里插入图片描述
如图所示,横向误差为 d d d,航向误差为 θ − θ r \theta-\theta_r θθr,投影点的速度大小为 s ˙ \dot{s} s˙,注意这里的 θ \theta θ是航向角,与横摆角 φ \varphi φ相差一个侧偏角 β \beta β
θ = φ + β \begin{equation} \theta=\varphi+\beta \end{equation} θ=φ+β
根据之前所介绍的笛卡尔坐标系与自然坐标系的转换关系可知:
d ˙ = v sin ⁡ ( θ − θ r ) \begin{equation} \dot{d}=v\sin(\theta-\theta_r) \end{equation} d˙=vsin(θθr)
s ˙ = v cos ⁡ ( θ − θ r ) 1 − k r d \begin{equation} \dot{s}=\frac{v\cos(\theta-\theta_r)}{1-k_rd} \end{equation} s˙=1krdvcos(θθr)
这里 k r k_r kr是投影点处的曲率。
结合式1和2
d ˙ = v sin ⁡ ( φ + β − θ r ) = v sin ⁡ β cos ⁡ ( φ − θ ) + v cos ⁡ β sin ⁡ ( φ − θ ) \begin{equation} \dot{d}=v\sin(\varphi+\beta-\theta_r)=v\sin{\beta}\cos{(\varphi-\theta)}+v\cos{\beta}\sin{(\varphi-\theta)} \end{equation} d˙=vsin(φ+βθr)=vsinβcos(φθ)+vcosβsin(φθ)
φ − θ r \varphi-\theta_r φθr为小量,所以上式进一步简化为
d ˙ = v y + v x ( φ − θ r ) \begin{equation} \dot{d}=v_y+v_x(\varphi-\theta_r) \end{equation} d˙=vy+vx(φθr)

e d = d \begin{equation} e_d=d \end{equation} ed=d
e φ = φ − θ r \begin{equation} e_{\varphi}=\varphi-\theta_{r} \end{equation} eφ=φθr
求一阶二阶导数则有
e d ˙ = v x e φ + v y \begin{equation} \dot{e_d}=v_xe_{\varphi}+v_y \end{equation} ed˙=vxeφ+vy
假设 v x v_x vx是常数
v y ˙ = e d ¨ − v x e φ ˙ \begin{equation} \dot{v_y}=\ddot{e_d}-v_x\dot{e_{\varphi}} \end{equation} vy˙=ed¨vxeφ˙
e ¨ φ = φ ¨ − θ ¨ r ≈ φ ¨ \begin{equation} \ddot{e}_{\varphi}=\ddot{\varphi}-\ddot{\theta}_{r}≈\ddot{\varphi} \end{equation} e¨φ=φ¨θ¨rφ¨
这里 θ ¨ r \ddot{\theta}_r θ¨r约等于0,是因为轨迹通常比较平滑。
综合可得
{ v y = e ˙ d − v x e φ v ˙ y = e ¨ d − v x e ˙ φ φ ˙ = e ˙ φ + θ ˙ r φ ¨ = e ¨ φ \begin{equation} \begin{cases} v_y=\dot{e}_d-v_xe_{\varphi}\\ \dot{v}_y=\ddot{e}_d-v_x\dot{e}_{\varphi} \\ \dot{\varphi}=\dot{e}_{\varphi}+\dot{\theta}_r \\ \ddot{\varphi}=\ddot{e}_{\varphi} \end{cases} \end{equation} vy=e˙dvxeφv˙y=e¨dvxe˙φφ˙=e˙φ+θ˙rφ¨=e¨φ
由上节的公式:
[ v y ˙ φ ¨ ] = [ C α f + C α r m v x a C α f − b C α r m v x − v x a C α f − b C α r I v x a 2 C α f + b 2 C α r I v x ] [ v y φ ˙ ] + [ − C α f m − a C α f I ] δ \begin{equation} \begin{bmatrix} \dot{v_y} \\ \ddot{\varphi} \end{bmatrix}= \begin{bmatrix} \frac{C_{\alpha{f}}+C_{\alpha{r}}}{mv_x} & \frac{aC_{\alpha{f}}-bC_{\alpha{r}}}{mv_x}-v_x \\ \frac{aC_{\alpha{f}}-bC_{\alpha{r}}}{Iv_x} & \frac{a^2C_{\alpha{f}}+b^2C_{\alpha{r}}}{Iv_x} \end{bmatrix} \begin{bmatrix} v_y \\ \dot{\varphi} \end{bmatrix}+ \begin{bmatrix} -\frac{C_{\alpha{f}}}{m} \\ -\frac{aC_{\alpha{f}}}{I} \end{bmatrix}\delta \end{equation} [vy˙φ¨]=[mvxCαf+CαrIvxaCαfbCαrmvxaCαfbCαrvxIvxa2Cαf+b2Cαr][vyφ˙]+[mCαfIaCαf]δ
结合式11和式12可得
e ¨ d = C α f + C α r m v x e ˙ d + ( − C α f + C α r m ) e φ + a C α f − b C α r m v x e ˙ φ + ( a C α f − b C α r m v x − v x ) θ ˙ r + ( − C α f m ) δ \begin{equation} \ddot{e}_d=\frac{C_{\alpha{f}}+C_{\alpha{r}}}{mv_x} \dot{e}_d+(-\frac{C_{\alpha{f}}+C_{\alpha{r}}}{m})e_{\varphi}+\frac{aC_{\alpha{f}}-bC_{\alpha{r}}}{mv_x}\dot{e}_{\varphi}+(\frac{aC_{\alpha{f}}-bC_{\alpha{r}}}{mv_x}-v_x)\dot{\theta}_r+(-\frac{C_{\alpha{f}}}{m})\delta \end{equation} e¨d=mvxCαf+Cαre˙d+(mCαf+Cαr)eφ+mvxaCαfbCαre˙φ+(mvxaCαfbCαrvx)θ˙r+(mCαf)δ
e ¨ φ = a C α f − b C α r I v x e ˙ d + ( − a C α f − b C α r I ) e φ + a 2 C α f + b 2 C α r I v x e ˙ φ + ( a 2 C α f + b 2 C α r I v x ) θ ˙ r + ( − a C α f I ) δ \begin{equation} \ddot{e}_{\varphi}=\frac{aC_{\alpha{f}}-bC_{\alpha{r}}}{Iv_x} \dot{e}_d+(-\frac{aC_{\alpha{f}}-bC_{\alpha{r}}}{I})e_{\varphi}+\frac{a^2C_{\alpha{f}}+b^2C_{\alpha{r}}}{Iv_x}\dot{e}_{\varphi}+(\frac{a^2C_{\alpha{f}}+b^2C_{\alpha{r}}}{Iv_x})\dot{\theta}_r+(-\frac{aC_{\alpha{f}}}{I})\delta \end{equation} e¨φ=IvxaCαfbCαre˙d+(IaCαfbCαr)eφ+Ivxa2Cαf+b2Cαre˙φ+(Ivxa2Cαf+b2Cαr)θ˙r+(IaCαf)δ
进而有
[ e ˙ d e ¨ d e ˙ φ e ¨ φ ] = [ 0 1 0 0 0 C α f + C α r m v x − C α f + C α r m a C α f − b C α r m v x 0 0 0 1 0 a C α f − b C α r I v x − a C α f − b C α r I a 2 C α f + b 2 C α r I v x ] [ e d e ˙ d e φ e ˙ φ ] + [ 0 − C α f m 0 − a C α f I ] δ + [ 0 a C α f − b C α r m v x − v x 0 a 2 C α f + b 2 C α r I v x ] θ ˙ r \begin{equation} \begin{bmatrix} \dot{e}_d \\ \ddot{e}_{d} \\ \dot{e}_{\varphi} \\ \ddot{e}_{\varphi} \end{bmatrix}= \begin{bmatrix} 0&1&0&0 \\ 0&\frac{C_{\alpha{f}}+C_{\alpha{r}}}{mv_x} &-\frac{C_{\alpha{f}}+C_{\alpha{r}}}{m}&\frac{aC_{\alpha{f}}-bC_{\alpha{r}}}{mv_x} \\ 0&0&0&1 \\ 0&\frac{aC_{\alpha{f}}-bC_{\alpha{r}}}{Iv_x}&-\frac{aC_{\alpha{f}}-bC_{\alpha{r}}}{I}&\frac{a^2C_{\alpha{f}}+b^2C_{\alpha{r}}}{Iv_x} \end{bmatrix} \begin{bmatrix} e_d \\ \dot{e}_d \\ e_{\varphi} \\ \dot{e}_{\varphi} \end{bmatrix}+ \begin{bmatrix} 0\\ -\frac{C_{\alpha{f}}}{m} \\ 0 \\ -\frac{aC_{\alpha{f}}}{I} \end{bmatrix}\delta+ \begin{bmatrix} 0 \\ \frac{aC_{\alpha{f}}-bC_{\alpha{r}}}{mv_x}-v_x \\ 0 \\ \frac{a^2C_{\alpha{f}}+b^2C_{\alpha{r}}}{Iv_x} \end{bmatrix}\dot{\theta}_r \end{equation} e˙de¨de˙φe¨φ = 00001mvxCαf+Cαr0IvxaCαfbCαr0mCαf+Cαr0IaCαfbCαr0mvxaCαfbCαr1Ivxa2Cαf+b2Cαr ede˙deφe˙φ + 0mCαf0IaCαf δ+ 0mvxaCαfbCαrvx0Ivxa2Cαf+b2Cαr θ˙r
e ˙ r r = A e r r + B u + C θ ˙ r \begin{equation} \dot{e}_{rr}=Ae_{rr}+Bu+C\dot{\theta}_r \end{equation} e˙rr=Aerr+Bu+Cθ˙r

2 LQR原理

对于式16,先暂时不考虑最后一项,那么有
e ˙ r r = A e r r + B u \begin{equation} \dot{e}_{rr}=Ae_{rr}+Bu \end{equation} e˙rr=Aerr+Bu
目的是选择合适的 u u u使得 ∣ e ˉ r r ∣ |\boldsymbol{\bar{e}}_{\boldsymbol{rr}}| eˉrr尽可能小,也即式
J = w a e r r 2 + w b u 2 \begin{equation} J=w_a{\boldsymbol{e}}^2_{\boldsymbol{rr}}+w_bu^2 \end{equation} J=waerr2+wbu2
尽可能小,进一步也即
J = e r r T Q e r r + u T R u \begin{equation} J={\boldsymbol{e}}^T_{\boldsymbol{rr}}Q{\boldsymbol{e}}_{\boldsymbol{rr}}+u^TRu \end{equation} J=errTQerr+uTRu
尽可能小,其中 Q Q Q R R R是对角矩阵,问题就变成了在式17的约束下使 J J J取最小值。

2.1 连续方程离散化

式17写成一般形式
x ˙ = A x + B u \begin{equation} \dot{x}=Ax+Bu \end{equation} x˙=Ax+Bu
上式两边积分
∫ t t + d t x ˙ ( τ ) d τ = ∫ t t + d t A x ( τ ) d τ + ∫ t t + d t B u ( τ ) d τ \begin{equation} \int_t^{t+dt}\dot{x}(\tau)d\tau=\int_t^{t+dt}Ax(\tau)d\tau+\int_t^{t+dt}Bu(\tau)d\tau \end{equation} tt+dtx˙(τ)dτ=tt+dtAx(τ)dτ+tt+dtBu(τ)dτ
得到
x ( t + d t ) − x ( t ) = A x ( ξ ) d t + B u ( ξ ) d t \begin{equation} x(t+dt)-x(t)=Ax(\xi)dt+Bu(\xi)dt \end{equation} x(t+dt)x(t)=Ax(ξ)dt+Bu(ξ)dt
A ( ξ ) A(\xi) A(ξ)采用中值欧拉法,对 u ( ξ ) u(\xi) u(ξ)采用向前欧拉法(因为 u ( t + d t ) u(t+dt) u(t+dt)未知)得到:
x ( t + d t ) = x ( t ) + A d t ( x ( t + d t ) + x ( t ) 2 ) + B u ( t ) d t \begin{equation} x(t+dt)=x(t)+Adt(\frac{x(t+dt)+x(t)}{2})+Bu(t)dt \end{equation} x(t+dt)=x(t)+Adt(2x(t+dt)+x(t))+Bu(t)dt
( I − A d t 2 ) x ( t + d t ) = ( I + A d t 2 ) x ( t ) + B u ( t ) d t \begin{equation} (I-\frac{Adt}{2})x(t+dt)=(I+\frac{Adt}{2})x(t)+Bu(t)dt \end{equation} (I2Adt)x(t+dt)=(I+2Adt)x(t)+Bu(t)dt
x ( t + d t ) = ( I − A d t 2 ) − 1 ( I + A d t 2 ) x ( t ) + ( I − A d t 2 ) − 1 B d t u ( t ) ≈ ( I − A d t 2 ) − 1 ( I + A d t 2 ) x ( t ) + B d t u ( t ) \begin{equation} \begin{split} x(t+dt) &= (I-\frac{Adt}{2})^{-1}(I+\frac{Adt}{2})x(t)+(I-\frac{Adt}{2})^{-1}Bdtu(t) \\ &≈(I-\frac{Adt}{2})^{-1}(I+\frac{Adt}{2})x(t)+Bdtu(t) \end{split} \end{equation} x(t+dt)=(I2Adt)1(I+2Adt)x(t)+(I2Adt)1Bdtu(t)(I2Adt)1(I+2Adt)x(t)+Bdtu(t)
x k + 1 = A ˉ x k + B ˉ u k \begin{equation} x_{k+1}=\bar{A}x_k+\bar{B}{u_k} \end{equation} xk+1=Aˉxk+Bˉuk

2.2 LQR

问题就是在式26的约束下,求 u u u使式
J = ∑ k = 1 ∞ x k T Q x k + u k T R u k \begin{equation} J=\sum_{k=1}^\infty{x^T_{k}Qx_k}+u^T_kRu_k \end{equation} J=k=1xkTQxk+ukTRuk
取得最小值。
u u u的形式为
u = − K x \begin{equation} u=-Kx \end{equation} u=Kx
K = ( R + B ˉ T P B ˉ ) − 1 B ˉ T P A ˉ \begin{equation} K=(R+\bar{B}^TP\bar{B})^{-1}\bar{B}^TP\bar{A} \end{equation} K=(R+BˉTPBˉ)1BˉTPAˉ
其中其 P P P就是离散时间 R i c c a t i Riccati Riccati方程
P = Q + A ˉ T P A ˉ − A ˉ T P B ˉ ( R + B ˉ T P B ˉ ) − 1 B ˉ T P A ˉ \begin{equation} P=Q+\bar{A}^TP\bar{A}-\bar{A}^TP\bar{B}(R+\bar{B}^TP\bar{B})^{-1}\bar{B}^TP\bar{A} \end{equation} P=Q+AˉTPAˉAˉTPBˉ(R+BˉTPBˉ)1BˉTPAˉ
的解。

3 前馈控制与航向误差

对于式16,如果使用上一节的LQR结果(式28、29),
e ˙ r r = ( A − B K ) e r r + C θ ˙ r \begin{equation} \dot{e}_{rr}=(A-BK)e_{rr}+C\dot{\theta}_r \end{equation} e˙rr=(ABK)err+Cθ˙r
无论 K K K取何值, e ˙ r r \dot{e}_{rr} e˙rr e r r {e}_{rr} err不可能同时为0,那么 e r r {e}_{rr} err也就不会为0,系统存在稳态误差
引入前馈控制消除稳态误差
u = − K x + δ f \begin{equation} u=-Kx+\delta_f \end{equation} u=Kx+δf
在这里插入图片描述
e ˙ r r = ( A − B K ) e r r + B δ f + C θ ˙ r \begin{equation} \dot{e}_{rr}=(A-BK)e_{rr}+B\delta_f+C\dot{\theta}_r \end{equation} e˙rr=(ABK)err+Bδf+Cθ˙r
系统稳定后, e ˙ r r = 0 \dot{e}_{rr}=0 e˙rr=0
e r r = − ( A − B K ) − 1 ( B δ f + C θ ˙ r ) \begin{equation} e_{rr}=-(A-BK)^{-1}(B\delta_f+C\dot{\theta}_r) \end{equation} err=(ABK)1(Bδf+Cθ˙r)
选取合适的 δ f \delta_f δf,使 e r r {e}_{rr} err尽可能接近0。
式34展开后得:
e r r = [ 1 k 1 { δ f − θ ˙ r v x [ a + b − b k 3 − m v x 2 a + b ( b c f + a c r k 3 − a c r ) ] } 0 − θ ˙ r v x ( b + a a + b m v x 2 c α f ) 0 ] \begin{equation} e_{rr}= \begin{bmatrix} \frac{1}{k_1}\{\delta_f-\frac{\dot{\theta}_r}{v_x}[a+b-bk_3-\frac{mv^2_x}{a+b}(\frac{b}{c_f}+\frac{a}{c_r}k_3-\frac{a}{c_r})]\} \\ 0\\ -\frac{\dot{\theta}_r}{v_x}(b+\frac{a}{a+b}\frac{mv^2_x}{c_{\alpha{f}}})\\ 0 \end{bmatrix} \end{equation} err= k11{δfvxθ˙r[a+bbk3a+bmvx2(cfb+crak3cra)]}0vxθ˙r(b+a+bacαfmvx2)0
可知当
δ f = θ ˙ r v x [ a + b − b k 3 − m v x 2 a + b ( b c f + a c r k 3 − a c r ) ] \begin{equation} \delta_f=\frac{\dot{\theta}_r}{v_x}[a+b-bk_3-\frac{mv^2_x}{a+b}(\frac{b}{c_f}+\frac{a}{c_r}k_3-\frac{a}{c_r})] \end{equation} δf=vxθ˙r[a+bbk3a+bmvx2(cfb+crak3cra)]
时, e d {e}_{d} ed等于0,其中 k 3 k_3 k3是反馈 K K K中的第三个元素。
通过一系列化简,式35的第三个元素可近似等于 − β -\beta β,即
e φ = − β \begin{equation} e_{\varphi}=-\beta \end{equation} eφ=β
因为目的是 θ − θ r = 0 \theta-\theta_r=0 θθr=0,那么 e φ {e}_{\varphi} eφ的稳态误差刚好就是 − β -\beta β

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/494465.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Chromium 中chrome.webRequest扩展接口定义c++

一、chrome.webRequest 注意:从 Manifest V3 开始,"webRequestBlocking"权限不再适用于大多数扩展程序。以"declarativeNetRequest"为例,它允许使用declarativeNetRequest API。除了"webRequestBlocking"之外…

如何实现圆形头像功能

文章目录 1 概念介绍2 使用方法3 示例代码我们在上一章回中介绍了Stack Widget,本章回中将介绍CircleAvatar这种Widget,闲话休提,让我们一起Talk Flutter吧。 1 概念介绍 在上一回中我们使用了CircleAvatar Widget,之前也没有介绍过此Widget,因此有些看官希望对它做一些介绍…

移动网络(2,3,4,5G)设备TCP通讯调试方法

背景: 当设备是移动网络设备连接云平台的时候,如果服务器没有收到网络数据,移动物联设备发送不知道有没有有丢失数据的时候,需要一个抓取设备出来的数据和服务器下发的数据的方法。 1.服务器系统是很成熟的,一般是linu…

解析在OceanBase创建分区的常见问题|OceanBase 用户问题精粹

在《分区策略和管理分区计划的实践方案》这篇文章中,我们介绍了在ODC中制定分区策略及有效管理分区计划的经验。有不少用户在该帖下提出了使用中的问题,其中一个关于创建分区的限制条件的问题,也是很多用户遭遇的老问题。因此本文以其为切入&…

重温设计模式--命令模式

文章目录 命令模式的详细介绍C 代码示例C代码示例2 命令模式的详细介绍 定义与概念 命令模式属于行为型设计模式,它旨在将一个请求封装成一个对象,从而让你可以用不同的请求对客户端进行参数化,将请求的发送者和接收者解耦,并且能…

NavMeshAgent直接transform.position移动报错

对于NavMeshAgent组件,如果直接用transform.position移动位置会报错如下: xxx can only be called on an active agent that has been placed on a NavMesh。 需要使用如下方法进行移动位置,先不激活,移动完毕再激活。 using Sy…

272-1路万兆光纤SFP+和1路千兆网络 FMC子卡模块

一、概述 该板卡是基于kc705和ml605的fmc 10g万兆光纤扩展板设计,提供了1路万兆光纤SFP和1路千兆网络接口。可搭配我公司开发的FPGA载卡使用。载卡可参考:ID204 SFP(10 Gigabit Small Form Factor Pluggable)是一种可…

GitCode 光引计划投稿|JavaVision:引领全能视觉智能识别新纪元

在人工智能技术飞速发展的今天,计算机视觉作为AI领域的重要分支,正逐渐渗透到各行各业中。JavaVision,作为[光引计划]的一部分,致力于提供一个基于Java的全能视觉智能识别解决方案。同时它集成了MilvusPlus,旨在提供一…

如何在自己的云服务器上部署mysql

如何在自己的云服务器上部署mysql 前言: 我是用的是阿里云服务器,我的服务器上安装的系统是Ubuntu 20.04,一下内容都是居于此撰写。 前期准备工作 远程链接自己的云服务器,这里给大家推荐一个好用的软件:FinalShel…

华院计算参与项目再次被《新闻联播》报道

12月17日,央视《新闻联播》播出我国推进乡村振兴取得积极进展。其中,华院计算参与的江西省防止返贫监测帮扶大数据系统被报道,该系统实现了由原来的“人找人”向“数据找人”的转变,有效提升监测帮扶及时性和有效性,守…

UML图【重要】

文章目录 2.1 类图概述2.2 类图的作用2.3 类图表示法2.3.1 类的表示方式2.3.2 类与类之间关系的表示方式2.3.2.1 关联关系2.3.2.2 聚合关系2.3.2.3 组合关系2.3.2.4 依赖关系2.3.2.5 继承关系2.3.2.6 实现关系 统一建模语言(Unified Modeling Language,U…

【数据科学导论】第一二章·大数据与数据表示与存储

🌈 个人主页:十二月的猫-CSDN博客 🔥 系列专栏: 🏀数据处理与分析_十二月的猫的博客-CSDN博客 💪🏻 十二月的寒冬阻挡不了春天的脚步,十二点的黑夜遮蔽不住黎明的曙光 目录 1. 前言…

问题解决:发现Excel中的部分内容有问题。是否让我们尽量尝试恢复? 如果您信任此工作簿的源,请单击“是”。

在开发同步导出功能是遇到了如标题所示的问题,解决后遂记录下来供大家参考。 RestController public class XxxController {PostMapping("/export")public BaseResponse export(RequestBody PolicyErrorAnalysisExportReq exportReq, HttpServletRespons…

软件设计与体系结构

1.简要说明什么是软件体系结构,软件体系结构模型,为什么要建立软件体系结构模型? 答:软件体系结构指一个软件系统在高层次上的结构化组织方式,包括系统的组成部分和各个部分之间的关系,以及它们与环境之间的…

开发手札:CameraRTS精准性优化

虽然三维软件提供了基本的物体RTS操作,但是对于用户来说过于复杂。 这些操作方式需要用户理解什么是三维空间、XYZ坐标系、欧拉角等。但是用户视角下,就一个二维屏幕动来动去的鼠标光标。 之前写过一套RTM组件,RTM组件&#xff0…

高级的SQL查询技巧有哪些?

成长路上不孤单😊😊😊😊😊😊 【14后😊///C爱好者😊///持续分享所学😊///如有需要欢迎收藏转发///😊】 今日分享关于高级SQL查询技巧方面的相关内容&#xf…

helm的介绍和安装

1 helm概述 1.1 资源对象难以管理的问题 helm是k8s资源清单的管理工具,它就像Linux下的包管理器,比如centos的yum,ubuntu的apt helm:命令行工具,主要用于k8s的chart的创建,打包,发布和管理。…

专业的内外网数据交换方案 可解决安全、效率、便捷3大问题

内外网数据交换是很多企业和行业都会面临的场景,既然隔离了内外网,重中之重就是要确保数据的安全性,其次在数据流转交换过程中,不能太繁琐复杂,需要让用户快速、便捷的进行数据交换。首先我们来看看,在进行…

2024 楚慧杯 re wp

go_bytes 附件拖入ida 输入长度为0x28,每两位字符的4bit拼接 与一个常量值经过运算后的值进行异或,并且判断是否相等 脚本 bouquet 附件拖入ida。简单去一下花 构建了一个二叉树,然后递归调用函数 重新排列一下再层序遍历读出即可 zistel 附件…

BERT模型入门(1)BERT的基本概念

文章目录 BERT是Bidirectional Encoder Representations from Transformers的首字母简写,中文意思是:Transformer的双向编码器表示。它是谷歌发布的最先进的嵌入模型。BERT在许多NLP任务中提供了更好的结果,如问答、文本生成、句子分类等&…