语音增强的损失函数选择

一、最优尺度不变信噪比(OSISNR)损失函数

  参考:论文解读 --Optimal scale-invariant signal-to-noise ratio and curriculum learning for monaural multi-spea
  最优尺度不变信噪比(OSI-SNR)是一种用于评估信号质量的指标,特别是在语音分离和增强任务中。OSI-SNR 通过优化估计信号与目标信号之间的相似性,提供了一种更稳定和可靠的信号质量度量。OSI-SNR 的计算步骤如下: s s s表示原始语音信号, s ^ \hat{s} s^表示重建的语音信号。
⟨ s , s ^ ⟩ = ∑ t = 1 T s [ t ] ⋅ s ^ [ t ] \langle s, \hat{s} \rangle = \sum_{t=1}^{T} s[t] \cdot \hat{s}[t] s,s^=t=1Ts[t]s^[t]
∣ s ^ ∣ 2 = ∑ t = 1 T ∣ s ^ [ t ] ∣ 2 |s^{\hat{}}|^2 = \sum_{t=1}^{T} |\hat{s}[t]|^2 s^2=t=1Ts^[t]2
λ = ∣ s ^ ∣ 2 ⟨ s , s ^ ⟩ \lambda = \frac{|s^{\hat{}}|^2}{\langle s, \hat{s} \rangle} λ=s,s^s^2
s target = λ ⋅ s ^ s_{\text{target}} = \lambda \cdot \hat{s} starget=λs^
e noise = s ^ − s target e_{\text{noise}} = \hat{s} - s_{\text{target}} enoise=s^starget
OSI-SNR = 10 log ⁡ 10 ( ∥ s target ∥ 2 ∥ e noise ∥ 2 ) \text{OSI-SNR} = 10 \log_{10} \left( \frac{\| s_{\text{target}} \|^2}{\| e_{\text{noise}} \|^2} \right) OSI-SNR=10log10(enoise2starget2)
  将 最优尺度不变信噪比(OSI-SNR) 的倒数作为损失函数是一个合理的想法,尤其是在某些情况下,可能会更好地反映模型的性能。OSI-SNR 是一个衡量信号质量的指标,值越高表示信号质量越好。在训练过程中,我们通常希望最小化损失函数,因此可以考虑将 OSI-SNR 的倒数作为损失函数。参考:基于深层声学特征的端到端语音分离

方法 1:每一帧的 OSI-SNR 取倒数计算损失,再取均值

  1. 计算每一帧的 OSI-SNR
    OSI-SNR i = 10 log ⁡ 10 ( ∥ s target , i ∥ 2 ∥ e noise , i ∥ 2 ) \text{OSI-SNR}_i = 10 \log_{10} \left( \frac{\| s_{\text{target}, i} \|^2}{\| e_{\text{noise}, i} \|^2} \right) OSI-SNRi=10log10(enoise,i2starget,i2)
  2. 计算损失
    Loss i = 1 OSI-SNR i + ϵ = 1 10 log ⁡ 10 ( ∥ s target , i ∥ 2 ∥ e noise , i ∥ 2 ) + ϵ \text{Loss}_i = \frac{1}{\text{OSI-SNR}_i + \epsilon} = \frac{1}{10 \log_{10} \left( \frac{\| s_{\text{target}, i} \|^2}{\| e_{\text{noise}, i} \|^2} \right) + \epsilon} Lossi=OSI-SNRi+ϵ1=10log10(enoise,i2starget,i2)+ϵ1
  3. 取均值
    Final Loss = 1 N ∑ i = 1 N Loss i = 1 N ∑ i = 1 N 1 10 log ⁡ 10 ( ∥ s target , i ∥ 2 ∥ e noise , i ∥ 2 ) + ϵ \text{Final Loss} = \frac{1}{N} \sum_{i=1}^{N} \text{Loss}_i = \frac{1}{N} \sum_{i=1}^{N} \frac{1}{10 \log_{10} \left( \frac{\| s_{\text{target}, i} \|^2}{\| e_{\text{noise}, i} \|^2} \right) + \epsilon} Final Loss=N1i=1NLossi=N1i=1N10log10(enoise,i2starget,i2)+ϵ1

方法 2:每一帧的 OSI-SNR 取均值,再取倒数计算损失

  1. 计算每一帧的 OSI-SNR
    OSI-SNR i = 10 log ⁡ 10 ( ∥ s target , i ∥ 2 ∥ e noise , i ∥ 2 ) \text{OSI-SNR}_i = 10 \log_{10} \left( \frac{\| s_{\text{target}, i} \|^2}{\| e_{\text{noise}, i} \|^2} \right) OSI-SNRi=10log10(enoise,i2starget,i2)
  2. 取均值
    Mean OSI-SNR = 1 N ∑ i = 1 N OSI-SNR i = 1 N ∑ i = 1 N 10 log ⁡ 10 ( ∥ s target , i ∥ 2 ∥ e noise , i ∥ 2 ) \text{Mean OSI-SNR} = \frac{1}{N} \sum_{i=1}^{N} \text{OSI-SNR}_i = \frac{1}{N} \sum_{i=1}^{N} 10 \log_{10} \left( \frac{\| s_{\text{target}, i} \|^2}{\| e_{\text{noise}, i} \|^2} \right) Mean OSI-SNR=N1i=1NOSI-SNRi=N1i=1N10log10(enoise,i2starget,i2)
  3. 计算损失
    Final Loss = 1 Mean OSI-SNR + ϵ = 1 1 N ∑ i = 1 N 10 log ⁡ 10 ( ∥ s target , i ∥ 2 ∥ e noise , i ∥ 2 ) + ϵ \text{Final Loss} = \frac{1}{\text{Mean OSI-SNR} + \epsilon} = \frac{1}{\frac{1}{N} \sum_{i=1}^{N} 10 \log_{10} \left( \frac{\| s_{\text{target}, i} \|^2}{\| e_{\text{noise}, i} \|^2} \right) + \epsilon} Final Loss=Mean OSI-SNR+ϵ1=N1i=1N10log10(enoise,i2starget,i2)+ϵ1
  • 方法 1 的最终损失函数是对每一帧的 OSI-SNR 值取倒数后再取均值,强调了每一帧的信号质量。
  • 方法 2 的最终损失函数是先计算所有帧的 OSI-SNR 的均值,然后取倒数,提供了一个整体的信号质量评估。
import numpy as np
def calculate_osi_snr_frame(target, estimated):# 获取帧数和频点数num_bins, num_frames = target.shapeosi_snr_frames = np.zeros(num_frames)for frame in range(num_frames):dot_product = np.sum(target[:, frame] * estimated[:, frame])estimated_energy = np.sum(np.abs(estimated[:, frame]) ** 2)lambda_opt = estimated_energy / (dot_product + 1e-10)  # 防止除以零target_adjusted = lambda_opt * target[:, frame]noise = estimated[:, frame] - target_adjustedtarget_energy = np.sum(np.abs(target_adjusted) ** 2)noise_energy = np.sum(np.abs(noise) ** 2)osi_snr_frames[frame] = 10 * np.log10(target_energy / (noise_energy + 1e-8))return osi_snr_frames
def loss_method_1(osi_snr_frames, epsilon=1e-8):# 每一帧的 OSI-SNR 取倒数计算损失,再取均值losses = 1 / (osi_snr_frames + epsilon)final_loss = np.mean(losses)return final_loss
def loss_method_2(osi_snr_frames, epsilon=1e-8):# 每一帧的 OSI-SNR 取均值,再取倒数计算损失mean_osi_snr = np.mean(osi_snr_frames)final_loss = 1 / (mean_osi_snr + epsilon)return final_loss
# 示例掩蔽矩阵 M1 和 M2
M1 = np.array([[0.5, 0.6, 0.7],[0.8, 0.9, 1.0],[1.1, 1.2, 1.3]])M2 = np.array([[0.4, 0.5, 0.6],[0.7, 0.8, 0.9],[1.0, 1.1, 1.2]])
# 计算每一帧的 OSI-SNR
osi_snr_frames = calculate_osi_snr_frame(M1, M2)
# 计算损失
loss1 = loss_method_1(osi_snr_frames)
loss2 = loss_method_2(osi_snr_frames)
print(f"Loss Method 1 (Frame-wise OSI-SNR): {loss1:.4f}")
print(f"Loss Method 2 (Mean OSI-SNR): {loss2:.4f}")
Loss Method 1 (Frame-wise OSI-SNR): 0.03342
Loss Method 2 (Mean OSI-SNR): 0.03333

二、幅度幂律压缩均方误差(MC-MSE)损失函数

  在音频信号处理和深度学习领域,幅度幂律压缩均方误差(Magnitude Compression Mean Squared Error, MC-MSE)是一种重要的损失函数,特别适用于语音增强和音频分离任务。MC-MSE通过引入幅度压缩的概念,能够更有效地处理具有大动态范围的音频信号,从而提高模型的性能。

2.1 、原理

  在传统的均方误差(MSE)损失函数中,模型对大幅度信号的敏感性可能导致对小幅度信号的学习不足。这种情况在音频信号处理中尤为明显,因为音频信号的幅度通常具有很大的动态范围。为了解决这个问题,MC-MSE引入了幅度压缩的机制,通过对信号幅度进行非线性变换,使得模型在训练过程中能够更好地关注小幅度信号的特征。

MC-MSE的核心思想是通过幂律压缩函数对信号幅度进行处理,从而使得损失函数在计算时能够更均衡地反映不同幅度信号的影响。具体来说,MC-MSE通过对目标信号和预测信号的幅度进行压缩,来计算它们之间的均方误差。

2.2、公式

MC-MSE Loss的计算公式可以表示为:
L MC-MSE = 1 N ∑ i = 1 N ( compress ( y i ) − compress ( y ^ i ) ) 2 L_{\text{MC-MSE}}= \frac{1}{N} \sum_{i=1}^{N} \left( \text{compress}(y_i) - \text{compress}(\hat{y}_i) \right)^2 LMC-MSE=N1i=1N(compress(yi)compress(y^i))2

其中:

  • y i y_i yi 是目标信号的幅度。
  • y ^ i \hat{y}_i y^i 是模型预测的幅度。
  • compress ( ⋅ ) \text{compress}(\cdot) compress() 是幅度压缩函数,通常采用幂律压缩形式。
    幅度压缩函数的形式为:
    compress ( x ) = sign ( x ) ⋅ ∣ x ∣ α \text{compress}(x) = \text{sign}(x) \cdot |x|^\alpha compress(x)=sign(x)xα

  在这里, α \alpha α是压缩因子,通常取值在 0 < α < 1 0 < \alpha < 1 0<α<1 之间。较小的 α \alpha α值会导致更强的压缩效果,从而使得模型在训练时能够更好地学习小幅度信号的特征。通过这种方式,MC-MSE损失函数能够有效地提高模型在音频处理任务中的性能,尤其是在复杂的噪声环境中。它不仅改善了模型对小幅度信号的学习能力,还增强了模型的鲁棒性,使其在实际应用中表现得更加出色。
  通过一个具体的例子来说明如何计算两个掩蔽之间的幅度幂律压缩均方误差(MC-MSE)。假设我们有两个掩蔽 M 1 M_1 M1 M 2 M_2 M2,它们的维度都是 3 × 3 3 \times 3 3×3(即3个时间帧和3个频率bin),并且我们选择压缩指数 p = 0.3 p = 0.3 p=0.3
  首先,我们对两个掩蔽应用幂律压缩。假设 M 1 M_1 M1 M 2 M_2 M2的值如下:
M 1 = [ 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 ] M_1 = \begin{bmatrix} 0.5 & 0.6 & 0.7 \\ 0.8 & 0.9 & 1.0 \\ 1.1 & 1.2 & 1.3 \end{bmatrix} M1= 0.50.81.10.60.91.20.71.01.3
M 2 = [ 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 ] M_2 = \begin{bmatrix} 0.4 & 0.5 & 0.6 \\ 0.7 & 0.8 & 0.9 \\ 1.0 & 1.1 & 1.2 \end{bmatrix} M2= 0.40.71.00.50.81.10.60.91.2

应用幂律压缩 p = 0.3 p = 0.3 p=0.3后,我们得到:
M 1 p = [ 0. 5 0.3 0. 6 0.3 0. 7 0.3 0. 8 0.3 0. 9 0.3 1. 0 0.3 1. 1 0.3 1. 2 0.3 1. 3 0.3 ] M_1^p = \begin{bmatrix} 0.5^{0.3} & 0.6^{0.3} & 0.7^{0.3} \\ 0.8^{0.3} & 0.9^{0.3} & 1.0^{0.3} \\ 1.1^{0.3} & 1.2^{0.3} & 1.3^{0.3} \end{bmatrix} M1p= 0.50.30.80.31.10.30.60.30.90.31.20.30.70.31.00.31.30.3
M 2 p = [ 0. 4 0.3 0. 5 0.3 0. 6 0.3 0. 7 0.3 0. 8 0.3 0. 9 0.3 1. 0 0.3 1. 1 0.3 1. 2 0.3 ] M_2^p = \begin{bmatrix} 0.4^{0.3} & 0.5^{0.3} & 0.6^{0.3} \\ 0.7^{0.3} & 0.8^{0.3} & 0.9^{0.3} \\ 1.0^{0.3} & 1.1^{0.3} & 1.2^{0.3} \end{bmatrix} M2p= 0.40.30.70.31.00.30.50.30.80.31.10.30.60.30.90.31.20.3
  接下来,我们计算两个压缩后的掩蔽之间的均方误差。具体地,对于每个元素,我们计算差的平方,然后对所有元素求平均。
L MC-MSE = 1 9 ( ( 0. 5 0.3 − 0. 4 0.3 ) 2 + ( 0. 6 0.3 − 0. 5 0.3 ) 2 + … + ( 1. 3 0.3 − 1. 2 0.3 ) 2 ) = 0.00135 L_{\text{MC-MSE}} = \frac{1}{9} \left( (0.5^{0.3} - 0.4^{0.3})^2 \\+ (0.6^{0.3} - 0.5^{0.3})^2 \\+ \ldots + (1.3^{0.3} - 1.2^{0.3})^2 \right) = 0.00135 LMC-MSE=91((0.50.30.40.3)2+(0.60.30.50.3)2++(1.30.31.20.3)2)=0.00135

import numpy as npdef calculate_mc_mse(M1, M2, p=0.3):compressed_M1 = M1 ** pcompressed_M2 = M2 ** pmse = np.mean((compressed_M1 - compressed_M2) ** 2)return mseM1 = np.array([[0.5, 0.6, 0.7], [0.8, 0.9, 1.0], [1.1, 1.2, 1.3]])
M2 = np.array([[0.4, 0.5, 0.6], [0.7, 0.8, 0.9], [1.0, 1.1, 1.2]])mc_mse = calculate_mc_mse(M1, M2, p=0.3)
print("MC-MSE:", mc_mse)
MC-MSE: 0.00135

三、融合损失函数

参考:AEC论文解读 – A Deep Hierarchical Fusion Network for Fullband Acoustic Echo Cancellation
  结合 最优尺度不变信噪比(OSI-SNR)幅度幂律压缩均方误差(MC-MSE) 的损失函数,可以通过超参数 γ \gamma γ 加权来形成最终的损失函数。根据您提供的公式,最终的损失计算公式可以表示为:
L = L OSI-SNR + γ L MC-MSE L = L_{\text{OSI-SNR}} + \gamma L_{\text{MC-MSE}} L=LOSI-SNR+γLMC-MSE

  1. OSI-SNR 损失【方法 1】
    L OSI-SNR = 1 N ∑ i = 1 N Loss i = 1 N ∑ i = 1 N 1 10 log ⁡ 10 ( ∥ s target , i ∥ 2 ∥ e noise , i ∥ 2 ) + ϵ L_{\text{OSI-SNR}}= \frac{1}{N} \sum_{i=1}^{N} \text{Loss}_i = \frac{1}{N} \sum_{i=1}^{N} \frac{1}{10 \log_{10} \left( \frac{\| s_{\text{target}, i} \|^2}{\| e_{\text{noise}, i} \|^2} \right) + \epsilon} LOSI-SNR=N1i=1NLossi=N1i=1N10log10(enoise,i2starget,i2)+ϵ1

  2. MC-MSE 损失
    L MC-MSE = 1 N ∑ i = 1 N ( compress ( y i ) − compress ( y ^ i ) ) 2 L_{\text{MC-MSE}}= \frac{1}{N} \sum_{i=1}^{N} \left( \text{compress}(y_i) - \text{compress}(\hat{y}_i) \right)^2 LMC-MSE=N1i=1N(compress(yi)compress(y^i))2

  3. 最终损失公式
    L = L OSI-SNR + γ ⋅ L MC-MSE = 1 N ∑ i = 1 N Loss i = 1 N ∑ i = 1 N 1 10 log ⁡ 10 ( ∥ s target , i ∥ 2 ∥ e noise , i ∥ 2 ) + ϵ + γ ⋅ 1 N ∑ i = 1 N ( compress ( y i ) − compress ( y ^ i ) ) 2 L = L_{\text{OSI-SNR}} + \gamma \cdot L_{\text{MC-MSE}}= \frac{1}{N} \sum_{i=1}^{N} \text{Loss}_i \\= \frac{1}{N} \sum_{i=1}^{N} \frac{1}{10 \log_{10} \left( \frac{\| s_{\text{target}, i} \|^2}{\| e_{\text{noise}, i} \|^2} \right) + \epsilon} +\gamma \cdot\frac{1}{N} \sum_{i=1}^{N} \left( \text{compress}(y_i) - \text{compress}(\hat{y}_i) \right)^2 L=LOSI-SNR+γLMC-MSE=N1i=1NLossi=N1i=1N10log10(enoise,i2starget,i2)+ϵ1+γN1i=1N(compress(yi)compress(y^i))2

  • γ \gamma γ:需要调试的经验值。
  • ϵ \epsilon ϵ:一个小常数,用于防止除以零的情况。
  • 这个损失函数通过加权结合了 OSI-SNR 和 MC-MSE,能够同时考虑信号的重建质量和相似性。
  • 通过调整 γ \gamma γ 的值,可以控制两种损失在最终损失中的相对重要性,从而优化模型的性能。
import numpy as np
def calculate_osi_snr_frame(target, estimated):num_bins, num_frames = target.shapeosi_snr_frames = np.zeros(num_frames)for frame in range(num_frames):dot_product = np.sum(target[:, frame] * estimated[:, frame])estimated_energy = np.sum(np.abs(estimated[:, frame]) ** 2)lambda_opt = estimated_energy / (dot_product + 1e-10)  # 防止除以零target_adjusted = lambda_opt * target[:, frame]noise = estimated[:, frame] - target_adjustedtarget_energy = np.sum(np.abs(target_adjusted) ** 2)noise_energy = np.sum(np.abs(noise) ** 2)osi_snr_frames[frame] = 10 * np.log10(target_energy / (noise_energy + 1e-8))return osi_snr_frames
def mc_mse_loss(target, estimated, gamma=0.3):compressed_target = np.power(np.abs(target), gamma)compressed_estimated = np.power(np.abs(estimated), gamma)loss = np.mean((compressed_estimated - compressed_target) ** 2)return loss
def combined_loss(target, estimated, gamma=15):# 计算每一帧的 OSI-SNRosi_snr_frames = calculate_osi_snr_frame(target, estimated)# 计算 OSI-SNR 损失osi_snr_loss = np.mean(1 / (osi_snr_frames + 1e-10))print('osi_snr_loss:', osi_snr_loss)# 计算 MC-MSE 损失mc_mse_value = mc_mse_loss(target, estimated)print('mc_mse_value:', mc_mse_value)# 计算最终损失final_loss = osi_snr_loss + gamma * mc_mse_valuereturn final_loss
# 示例掩蔽矩阵 M1 和 M2
M1 = np.array([[0.5, 0.6, 0.7],[0.8, 0.9, 1.0],[1.1, 1.2, 1.3]])M2 = np.array([[0.4, 0.5, 0.6],[0.7, 0.8, 0.9],[1.0, 1.1, 1.2]])
# 计算最终损失
loss_value = combined_loss(M1, M2, gamma=15)
print(f'Final Loss: {loss_value:.5f}')
osi_snr_loss: 0.033421230071106235
mc_mse_value: 0.0013543901266690674
Final Loss: 0.05374

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/494471.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

docker 容器的基本使用

docker 容器 一、docker是什么&#xff1f; 软件的打包技术&#xff0c;就是将算乱的多个文件打包为一个整体&#xff0c;打包技术在没有docker容器之前&#xff0c;一直是有这种需求的&#xff0c;比如上节课我把我安装的虚拟机给你们打包了&#xff0c;前面的这种打包方式是…

ElasticPDF-新国产 PDF 编辑器开发框架(基于 pdf.js Web PDF批注开发,实现高亮多边形橡皮擦历史记录保存注释文字)

摘要&#xff1a; ElasticPDF 是一款新国产 PDF 编辑器开发框架&#xff0c;基于开源 pdf.js 的渲染框架&#xff0c;增加了批注功能&#xff0c;支持全离线运行&#xff0c;适用于公网及内网系统。代码包结构延续了 pdf.js-dist 简洁的风格&#xff0c;兼容所有主流浏览器&…

如何利用Python爬虫获得1688按关键字搜索商品

在当今的数字化时代&#xff0c;数据已成为企业竞争的核心资源。对于电商行业来说&#xff0c;了解市场动态、分析竞争对手、获取商品信息是至关重要的。Python作为一种强大的编程语言&#xff0c;其丰富的库和框架使得数据爬取变得简单易行。本文将介绍如何使用Python爬虫技术…

自动驾驶控制算法-横向误差微分方程LQR前馈控制

本文是学习自动驾驶控制算法第六讲 前馈控制与航向误差以及前两节的学习笔记。 1 横向误差微分方程 以规划的轨迹作为自然坐标系&#xff0c;计算自车在轨迹上的投影点&#xff0c;进而计算误差&#xff1a; 如图所示&#xff0c;横向误差为 d d d&#xff0c;航向误差为 θ…

Chromium 中chrome.webRequest扩展接口定义c++

一、chrome.webRequest 注意&#xff1a;从 Manifest V3 开始&#xff0c;"webRequestBlocking"权限不再适用于大多数扩展程序。以"declarativeNetRequest"为例&#xff0c;它允许使用declarativeNetRequest API。除了"webRequestBlocking"之外…

如何实现圆形头像功能

文章目录 1 概念介绍2 使用方法3 示例代码我们在上一章回中介绍了Stack Widget,本章回中将介绍CircleAvatar这种Widget,闲话休提,让我们一起Talk Flutter吧。 1 概念介绍 在上一回中我们使用了CircleAvatar Widget,之前也没有介绍过此Widget,因此有些看官希望对它做一些介绍…

移动网络(2,3,4,5G)设备TCP通讯调试方法

背景&#xff1a; 当设备是移动网络设备连接云平台的时候&#xff0c;如果服务器没有收到网络数据&#xff0c;移动物联设备发送不知道有没有有丢失数据的时候&#xff0c;需要一个抓取设备出来的数据和服务器下发的数据的方法。 1.服务器系统是很成熟的&#xff0c;一般是linu…

解析在OceanBase创建分区的常见问题|OceanBase 用户问题精粹

在《分区策略和管理分区计划的实践方案》这篇文章中&#xff0c;我们介绍了在ODC中制定分区策略及有效管理分区计划的经验。有不少用户在该帖下提出了使用中的问题&#xff0c;其中一个关于创建分区的限制条件的问题&#xff0c;也是很多用户遭遇的老问题。因此本文以其为切入&…

重温设计模式--命令模式

文章目录 命令模式的详细介绍C 代码示例C代码示例2 命令模式的详细介绍 定义与概念 命令模式属于行为型设计模式&#xff0c;它旨在将一个请求封装成一个对象&#xff0c;从而让你可以用不同的请求对客户端进行参数化&#xff0c;将请求的发送者和接收者解耦&#xff0c;并且能…

NavMeshAgent直接transform.position移动报错

对于NavMeshAgent组件&#xff0c;如果直接用transform.position移动位置会报错如下&#xff1a; xxx can only be called on an active agent that has been placed on a NavMesh。 需要使用如下方法进行移动位置&#xff0c;先不激活&#xff0c;移动完毕再激活。 using Sy…

272-1路万兆光纤SFP+和1路千兆网络 FMC子卡模块

一、概述 该板卡是基于kc705和ml605的fmc 10g万兆光纤扩展板设计&#xff0c;提供了1路万兆光纤SFP和1路千兆网络接口。可搭配我公司开发的FPGA载卡使用。载卡可参考&#xff1a;ID204 SFP&#xff08;10 Gigabit Small Form Factor Pluggable&#xff09;是一种可…

GitCode 光引计划投稿|JavaVision:引领全能视觉智能识别新纪元

在人工智能技术飞速发展的今天&#xff0c;计算机视觉作为AI领域的重要分支&#xff0c;正逐渐渗透到各行各业中。JavaVision&#xff0c;作为[光引计划]的一部分&#xff0c;致力于提供一个基于Java的全能视觉智能识别解决方案。同时它集成了MilvusPlus&#xff0c;旨在提供一…

如何在自己的云服务器上部署mysql

如何在自己的云服务器上部署mysql 前言&#xff1a; 我是用的是阿里云服务器&#xff0c;我的服务器上安装的系统是Ubuntu 20.04&#xff0c;一下内容都是居于此撰写。 前期准备工作 远程链接自己的云服务器&#xff0c;这里给大家推荐一个好用的软件&#xff1a;FinalShel…

华院计算参与项目再次被《新闻联播》报道

12月17日&#xff0c;央视《新闻联播》播出我国推进乡村振兴取得积极进展。其中&#xff0c;华院计算参与的江西省防止返贫监测帮扶大数据系统被报道&#xff0c;该系统实现了由原来的“人找人”向“数据找人”的转变&#xff0c;有效提升监测帮扶及时性和有效性&#xff0c;守…

UML图【重要】

文章目录 2.1 类图概述2.2 类图的作用2.3 类图表示法2.3.1 类的表示方式2.3.2 类与类之间关系的表示方式2.3.2.1 关联关系2.3.2.2 聚合关系2.3.2.3 组合关系2.3.2.4 依赖关系2.3.2.5 继承关系2.3.2.6 实现关系 统一建模语言&#xff08;Unified Modeling Language&#xff0c;U…

【数据科学导论】第一二章·大数据与数据表示与存储

&#x1f308; 个人主页&#xff1a;十二月的猫-CSDN博客 &#x1f525; 系列专栏&#xff1a; &#x1f3c0;数据处理与分析_十二月的猫的博客-CSDN博客 &#x1f4aa;&#x1f3fb; 十二月的寒冬阻挡不了春天的脚步&#xff0c;十二点的黑夜遮蔽不住黎明的曙光 目录 1. 前言…

问题解决:发现Excel中的部分内容有问题。是否让我们尽量尝试恢复? 如果您信任此工作簿的源,请单击“是”。

在开发同步导出功能是遇到了如标题所示的问题&#xff0c;解决后遂记录下来供大家参考。 RestController public class XxxController {PostMapping("/export")public BaseResponse export(RequestBody PolicyErrorAnalysisExportReq exportReq, HttpServletRespons…

软件设计与体系结构

1.简要说明什么是软件体系结构&#xff0c;软件体系结构模型&#xff0c;为什么要建立软件体系结构模型&#xff1f; 答&#xff1a;软件体系结构指一个软件系统在高层次上的结构化组织方式&#xff0c;包括系统的组成部分和各个部分之间的关系&#xff0c;以及它们与环境之间的…

开发手札:CameraRTS精准性优化

虽然三维软件提供了基本的物体RTS操作&#xff0c;但是对于用户来说过于复杂。 这些操作方式需要用户理解什么是三维空间、XYZ坐标系、欧拉角等。但是用户视角下&#xff0c;就一个二维屏幕动来动去的鼠标光标。 之前写过一套RTM组件&#xff0c;RTM组件&#xff0…

高级的SQL查询技巧有哪些?

成长路上不孤单&#x1f60a;&#x1f60a;&#x1f60a;&#x1f60a;&#x1f60a;&#x1f60a; 【14后&#x1f60a;///C爱好者&#x1f60a;///持续分享所学&#x1f60a;///如有需要欢迎收藏转发///&#x1f60a;】 今日分享关于高级SQL查询技巧方面的相关内容&#xf…