矩阵:Input-Output Interpretation of Matrices (中英双语)

矩阵的输入-输出解释:深入理解与应用

在线性代数中,矩阵与向量的乘积 ( y = A x y = Ax y=Ax ) 是一个极为重要的关系。通过这一公式,我们可以将矩阵 ( A A A ) 看作一个将输入向量 ( x x x ) 映射到输出向量 ( y y y ) 的线性变换。在这种输入-输出解释中,向量 ( x x x ) 表示输入,而向量 ( y y y ) 表示对应的输出,而矩阵 ( A A A ) 则充当转换关系的核心。这种解释在许多领域都有广泛的应用,包括物理、数据科学、机器学习和工程等。


1. 基本定义与形式

对于一个 ( m × n m \times n m×n ) 矩阵 ( A A A ),如果我们有一个 ( n n n )-维输入向量 ( x x x ),通过矩阵-向量乘法 ( y = A x y = Ax y=Ax ),可以得到一个 ( m m m )-维输出向量 ( y y y )。用公式表示为:
y i = ∑ k = 1 n A i k x k = A i 1 x 1 + A i 2 x 2 + ⋯ + A i n x n , i = 1 , … , m . y_i = \sum_{k=1}^n A_{ik} x_k = A_{i1}x_1 + A_{i2}x_2 + \cdots + A_{in}x_n, \quad i = 1, \dots, m. yi=k=1nAikxk=Ai1x1+Ai2x2++Ainxn,i=1,,m.
这里,

  • ( y i y_i yi ) 是输出向量 ( y y y ) 的第 ( i i i ) 个分量,
  • ( A i k A_{ik} Aik ) 是矩阵 ( A A A ) 的第 ( i i i ) 行、第 ( k k k ) 列的元素,
  • ( x k x_k xk ) 是输入向量 ( x x x ) 的第 ( k k k ) 个分量。

这种形式表明,输出向量 ( y y y ) 的每个分量 ( y i y_i yi ) 都是输入向量 ( x x x ) 的各个分量 ( x k x_k xk ) 经过 ( A i k A_{ik} Aik ) 加权后的线性组合。


2. 矩阵元素的解释

矩阵 ( A A A ) 的元素 ( A i j A_{ij} Aij ) 可以解释为 输入向量 ( x j x_j xj ) 对输出向量 ( y i y_i yi ) 的贡献因子。换句话说,矩阵元素 ( A i j A_{ij} Aij ) 表示 ( x j x_j xj ) 对 ( y i y_i yi ) 的影响大小和方向。这种解释可以带来以下结论:

  1. 正负关系

    • 如果 ( A i j > 0 A_{ij} > 0 Aij>0 ),则 ( x j x_j xj ) 的增大会导致 ( y i y_i yi ) 增大。
    • 如果 ( A i j < 0 A_{ij} < 0 Aij<0 ),则 ( x j x_j xj ) 的增大会导致 ( y i y_i yi ) 减小。
  2. 强弱关系

    • 如果 ( A i j A_{ij} Aij ) 值很大,说明 ( y i y_i yi ) 对 ( x j x_j xj ) 的依赖程度很强。
    • 如果 ( A i j A_{ij} Aij ) 值接近零,说明 ( x j x_j xj ) 对 ( y i y_i yi ) 几乎没有影响。
  3. 行或列的相对大小

    • 如果矩阵第 ( i i i ) 行中某个元素 ( A i j A_{ij} Aij ) 比其他元素大很多,那么输出 ( y i y_i yi ) 主要依赖于 ( x j x_j xj )。
    • 如果第 ( j j j ) 列的元素都很大,说明 ( x j x_j xj ) 对多个 ( y i y_i yi ) 都有较大的影响。

3. 矩阵特殊结构的解释

矩阵的结构对输入-输出关系有重要影响,以下是几个常见的矩阵结构及其对应的解释:

  1. 下三角矩阵(Lower Triangular Matrix)
    如果矩阵 ( A A A ) 是下三角矩阵,即 ( A i j = 0 A_{ij} = 0 Aij=0 ) 当 ( j > i j > i j>i ) 时,则:

    • 输出 ( y i y_i yi ) 仅依赖于输入 ( x 1 , x 2 , … , x i x_1, x_2, \dots, x_i x1,x2,,xi )。
    • 这种结构经常出现在递归或因果关系中,例如动态系统的时间序列建模。
  2. 对角矩阵(Diagonal Matrix)
    如果 ( A A A ) 是对角矩阵,即 ( A i j = 0 A_{ij} = 0 Aij=0 ) 当 ( i ≠ j i \neq j i=j ) 时,则:

    • 每个 ( y i y_i yi ) 只依赖于对应的 ( x i x_i xi ),没有其他分量的影响。
    • 这种结构常用于独立变量的缩放(Scaling)或权重调整。
  3. 稀疏矩阵(Sparse Matrix)
    如果 ( A A A ) 是稀疏矩阵(大部分元素为零),则:

    • 只有非零元素所在列的输入 ( x j x_j xj ) 会对某些 ( y i y_i yi ) 产生影响。
    • 稀疏矩阵广泛用于表示稀疏网络、关系图或局部连接结构。

4. 具体例子

示例 1:简单矩阵输入-输出关系

假设我们有如下矩阵 ( A A A ) 和输入向量 ( x x x ):
A = [ 2 − 1 0 0 1 3 4 0 2 ] , x = [ 1 2 3 ] . A = \begin{bmatrix} 2 & -1 & 0 \\ 0 & 1 & 3 \\ 4 & 0 & 2 \end{bmatrix}, \quad x = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}. A= 204110032 ,x= 123 .
计算输出向量 ( y = A x y = Ax y=Ax ):
y 1 = 2 ⋅ 1 + ( − 1 ) ⋅ 2 + 0 ⋅ 3 = 0 , y 2 = 0 ⋅ 1 + 1 ⋅ 2 + 3 ⋅ 3 = 11 , y 3 = 4 ⋅ 1 + 0 ⋅ 2 + 2 ⋅ 3 = 10. y_1 = 2 \cdot 1 + (-1) \cdot 2 + 0 \cdot 3 = 0, y_2 = 0 \cdot 1 + 1 \cdot 2 + 3 \cdot 3 = 11, y_3 = 4 \cdot 1 + 0 \cdot 2 + 2 \cdot 3 = 10. y1=21+(1)2+03=0,y2=01+12+33=11,y3=41+02+23=10.
因此,输出向量为:
y = [ 0 11 10 ] . y = \begin{bmatrix} 0 \\ 11 \\ 10 \end{bmatrix}. y= 01110 .

示例 2:Python 实现

以下是用 Python 实现矩阵-向量乘法的代码:

import numpy as np# 定义矩阵 A 和输入向量 x
A = np.array([[2, -1, 0], [0, 1, 3], [4, 0, 2]])
x = np.array([1, 2, 3])# 计算输出向量 y
y = np.dot(A, x)print("Output vector y:", y)

运行结果为:

Output vector y: [ 0 11 10 ]

5. 应用场景

  1. 物理建模
    在物理系统中,矩阵 ( A A A ) 可以表示某种系统特性(如力的传递系数、热传导系数等),输入向量 ( x x x ) 表示输入条件(如力、热源),输出向量 ( y y y ) 表示系统的响应。

  2. 机器学习
    在神经网络的全连接层中,矩阵-向量乘法被用来将上一层的输出(输入向量 ( x x x ))映射到当前层的输出(向量 ( y y y ))。矩阵 ( A A A ) 表示该层的权重。

  3. 数据分析
    在主成分分析(PCA)中,矩阵 ( A A A ) 是主成分矩阵,输入 ( x x x ) 是原始数据,输出 ( y y y ) 是数据在主成分方向上的投影。

  4. 信号处理
    在数字滤波中,矩阵 ( A A A ) 表示滤波器,输入向量 ( x x x ) 表示信号,输出向量 ( y y y ) 是滤波后的信号。


6. 总结

矩阵 ( A A A ) 的输入-输出解释为我们提供了一种理解线性变换的直观方式,通过分析矩阵元素的大小和符号,我们可以深入理解输入与输出之间的依赖关系。这种分析方法在各种实际场景中具有广泛的应用价值,从物理建模到机器学习,再到信号处理和数据分析,矩阵的输入-输出解释无处不在,是学习和应用线性代数的重要工具。

英文版

Input-Output Interpretation of Matrices: A Detailed Overview

In linear algebra, the equation ( y = A x y = Ax y=Ax ) plays a fundamental role, where ( A A A ) is a matrix, ( x x x ) is an input vector, and ( y y y ) is the corresponding output vector. This relationship can be interpreted as a linear mapping where ( A A A ) transforms the input ( x x x ) into the output ( y y y ). This input-output interpretation provides a conceptual framework that is widely used in physics, machine learning, data science, and engineering.


1. Basic Definition

For an ( m × n m \times n m×n ) matrix ( A A A ), multiplying it by an ( n n n )-dimensional input vector ( x x x ) results in an ( m m m )-dimensional output vector ( y y y ). This process is described as:
y i = ∑ k = 1 n A i k x k = A i 1 x 1 + A i 2 x 2 + ⋯ + A i n x n , i = 1 , … , m . y_i = \sum_{k=1}^n A_{ik} x_k = A_{i1}x_1 + A_{i2}x_2 + \cdots + A_{in}x_n, \quad i = 1, \dots, m. yi=k=1nAikxk=Ai1x1+Ai2x2++Ainxn,i=1,,m.
Here:

  • ( y i y_i yi ) is the ( i i i )-th element of the output vector ( y y y ),
  • ( A i k A_{ik} Aik ) is the element in the ( i i i )-th row and ( k k k )-th column of ( A A A ),
  • ( x k x_k xk ) is the ( k k k )-th element of the input vector ( x x x ).

This equation tells us that each component ( y i y_i yi ) of the output is a weighted sum of the input components ( x k x_k xk ), where the weights are the elements of the matrix ( A A A ).


2. Meaning of Matrix Elements

The element ( A i j A_{ij} Aij ) in the matrix ( A A A ) has a clear interpretation: it represents the influence of the ( j j j )-th input variable ( x j x_j xj ) on the ( i i i )-th output variable ( y i y_i yi ). Some specific conclusions can be drawn from this:

  1. Positive or Negative Relationship

    • If ( A i j > 0 A_{ij} > 0 Aij>0 ), then an increase in ( x j x_j xj ) will cause ( y i y_i yi ) to increase.
    • If ( A i j < 0 A_{ij} < 0 Aij<0 ), then an increase in ( x j x_j xj ) will cause ( y i y_i yi ) to decrease.
  2. Strength of Dependence

    • A large magnitude of ( A i j A_{ij} Aij ) indicates that ( y i y_i yi ) strongly depends on ( x j x_j xj ).
    • A small ( ∣ A i j ∣ |A_{ij}| Aij ) means that ( x j x_j xj ) has little effect on ( y i y_i yi ).
  3. Row and Column Effects

    • If ( A i j A_{ij} Aij ) in the ( i i i )-th row is significantly larger than the other elements, ( y i y_i yi ) depends heavily on ( x j x_j xj ).
    • If a specific column ( j j j ) contains large values, then ( x j x_j xj ) has a strong influence on multiple output components ( y i y_i yi ).

3. Special Matrix Structures

The structure of the matrix ( A A A ) has a significant impact on how the input and output are related:

  1. Lower Triangular Matrix
    In a lower triangular matrix (where ( A i j = 0 A_{ij} = 0 Aij=0 ) for ($ j > i$ )):

    • Each output ( y i y_i yi ) only depends on ( x 1 , … , x i x_1, \dots, x_i x1,,xi ).
    • This is useful for systems with causality or stepwise dependencies, such as dynamic systems or recursive models.
  2. Diagonal Matrix
    In a diagonal matrix (where ( A i j = 0 A_{ij} = 0 Aij=0 ) for ( i ≠ j i \neq j i=j )):

    • Each ( y i y_i yi ) depends only on the corresponding ( x i x_i xi ).
    • This represents independent scaling of each input component.
  3. Sparse Matrix
    In a sparse matrix (with many zero elements):

    • Only inputs ( x j x_j xj ) corresponding to non-zero entries in ( A A A ) influence the outputs ( y i y_i yi ).
    • Sparse matrices are widely used in graph representations and localized systems.

4. Examples

Example 1: Simple Input-Output Relationship

Let the matrix ( A A A ) and input vector ( x x x ) be:
A = [ 2 − 1 0 0 1 3 4 0 2 ] , x = [ 1 2 3 ] . A = \begin{bmatrix} 2 & -1 & 0 \\ 0 & 1 & 3 \\ 4 & 0 & 2 \end{bmatrix}, \quad x = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}. A= 204110032 ,x= 123 .
The output vector ( y = A x y = Ax y=Ax ) is calculated as:
y 1 = 2 ⋅ 1 + ( − 1 ) ⋅ 2 + 0 ⋅ 3 = 0 , y 2 = 0 ⋅ 1 + 1 ⋅ 2 + 3 ⋅ 3 = 11 , y 3 = 4 ⋅ 1 + 0 ⋅ 2 + 2 ⋅ 3 = 10. y_1 = 2 \cdot 1 + (-1) \cdot 2 + 0 \cdot 3 = 0, y_2 = 0 \cdot 1 + 1 \cdot 2 + 3 \cdot 3 = 11, y_3 = 4 \cdot 1 + 0 \cdot 2 + 2 \cdot 3 = 10. y1=21+(1)2+03=0,y2=01+12+33=11,y3=41+02+23=10.
Thus, the output is:
y = [ 0 11 10 ] . y = \begin{bmatrix} 0 \\ 11 \\ 10 \end{bmatrix}. y= 01110 .

Example 2: Python Implementation

Below is the Python implementation of the above example:

import numpy as np# Define matrix A and input vector x
A = np.array([[2, -1, 0], [0, 1, 3], [4, 0, 2]])
x = np.array([1, 2, 3])# Compute output vector y
y = np.dot(A, x)print("Output vector y:", y)

Output:

Output vector y: [ 0 11 10 ]

5. Applications

  1. Physics and Engineering

    • In physics, the matrix ( A A A ) might represent a system’s characteristics (e.g., thermal conductivity, forces). The input ( x x x ) represents external stimuli (e.g., heat sources, forces), and ( y y y ) is the system’s response.
  2. Machine Learning

    • In neural networks, matrix-vector multiplication ( y = A x y = Ax y=Ax ) is used in fully connected layers, where ( A A A ) represents the layer’s weights.
  3. Data Analysis

    • In Principal Component Analysis (PCA), the matrix ( A A A ) transforms high-dimensional data ( x x x ) into lower-dimensional components ( y y y ).
  4. Signal Processing

    • In digital signal processing, ( A A A ) can represent a filter, with ( x x x ) as the input signal and ( y y y ) as the filtered output.
  5. Economics

    • Input-output models in economics use ( y = A x y = Ax y=Ax ) to represent how outputs of one sector depend on inputs from others.

6. Conclusion

The input-output interpretation of ( y = A x y = Ax y=Ax ) provides a powerful framework for understanding linear transformations. By analyzing the structure and elements of ( A A A ), we can understand how input components ( x x x ) influence output components ( y y y ). This perspective has broad applications, from physics and engineering to machine learning and data analysis, making it an indispensable tool for both theoretical and practical purposes.

补充

假设我们有一个矩阵 ( A A A ),它的维度是 ( 3 × 3 3 \times 3 3×3 ),并且有一个输入向量 ( x x x ) 和输出向量 ( y y y )。矩阵 ( A A A ) 和向量 ( x x x ) 如下所示:

A = [ 3 1 0 2 4 1 0 0 5 ] , x = [ 1 2 3 ] A = \begin{bmatrix} 3 & 1 & 0 \\ 2 & 4 & 1 \\ 0 & 0 & 5 \end{bmatrix}, \quad x = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} A= 320140015 ,x= 123

通过矩阵与向量的乘法,输出向量 ( y y y ) 是:

y = A × x = [ 3 1 0 2 4 1 0 0 5 ] × [ 1 2 3 ] = [ 3 × 1 + 1 × 2 + 0 × 3 2 × 1 + 4 × 2 + 1 × 3 0 × 1 + 0 × 2 + 5 × 3 ] = [ 5 13 15 ] y = A \times x = \begin{bmatrix} 3 & 1 & 0 \\ 2 & 4 & 1 \\ 0 & 0 & 5 \end{bmatrix} \times \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} = \begin{bmatrix} 3 \times 1 + 1 \times 2 + 0 \times 3 \\ 2 \times 1 + 4 \times 2 + 1 \times 3 \\ 0 \times 1 + 0 \times 2 + 5 \times 3 \end{bmatrix} = \begin{bmatrix} 5 \\ 13 \\ 15 \end{bmatrix} y=A×x= 320140015 × 123 = 3×1+1×2+0×32×1+4×2+1×30×1+0×2+5×3 = 51315

矩阵 ( A A A ) 的第 ( j j j ) 列的元素表示输入向量 ( x x x ) 的第 ( j j j ) 个分量对多个输出分量的贡献。具体来说,第 ( j j j ) 列的元素如何影响各个输出 ( y i y_i yi ),反映了输入的不同分量如何通过该列的系数影响多个输出。

理解 “如果第 ( j j j ) 列的元素都很大,说明 ( x j x_j xj ) 对多个 ( y i y_i yi ) 都有较大的影响”:

我们来看矩阵 ( A A A ) 的第 ( 2 2 2 ) 列:

A 列2 = [ 1 4 0 ] A_{\text{列2}} = \begin{bmatrix} 1 \\ 4 \\ 0 \end{bmatrix} A2= 140

  • 该列的元素分别是 ( A 12 = 1 A_{12} = 1 A12=1 ),( A 22 = 4 A_{22} = 4 A22=4 ),和 ( A 32 = 0 A_{32} = 0 A32=0 )。

从矩阵与向量的乘法中,我们看到 ( x 2 = 2 x_2 = 2 x2=2 ),而第 ( 2 2 2 ) 列的元素分别对输出 ( y 1 y_1 y1 ), ( y 2 y_2 y2 ), 和 ( y 3 y_3 y3 ) 有不同的贡献:

  • ( y 1 = 3 × 1 + 1 × 2 + 0 × 3 = 5 y_1 = 3 \times 1 + 1 \times 2 + 0 \times 3 = 5 y1=3×1+1×2+0×3=5 ),其中 ( 1 × 2 1 \times 2 1×2 ) 表示 ( x 2 x_2 x2 ) 对 ( y 1 y_1 y1 ) 的贡献是 ( 2 2 2 ),影响较小。
  • ( y 2 = 2 × 1 + 4 × 2 + 1 × 3 = 13 y_2 = 2 \times 1 + 4 \times 2 + 1 \times 3 = 13 y2=2×1+4×2+1×3=13 ),其中 ( 4 × 2 4 \times 2 4×2 ) 表示 ( x 2 x_2 x2 ) 对 ( y 2 y_2 y2 ) 的贡献是 ( 8 8 8 ),影响较大。
  • ( y 3 = 0 × 1 + 0 × 2 + 5 × 3 = 15 y_3 = 0 \times 1 + 0 \times 2 + 5 \times 3 = 15 y3=0×1+0×2+5×3=15 ),( x 2 x_2 x2 ) 对 ( y 3 y_3 y3 ) 的贡献是 ( 0 0 0 ),没有影响。

所以,如果矩阵的某一列的元素较大,这意味着该输入分量(例如 ( x 2 x_2 x2 ))对多个输出分量(例如 ( y 1 y_1 y1 ) 和 ( y 2 y_2 y2 ))都有较大的影响,并且影响的程度会随系数的大小变化。例如,在第 ( 2 2 2 ) 列中,系数 ( A 22 = 4 A_{22} = 4 A22=4 ) 对输出 ( y 2 y_2 y2 ) 贡献了较大的影响。

总结来说,矩阵的某一列的元素大,意味着该输入项对多个输出项有较强的影响,特别是在相关系数较大的情况下。

后记

2024年12月20日15点13分于上海,在GPT4o大模型辅助下完成。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/494559.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

C++ OpenGL学习笔记(4、绘制贴图纹理)

相关链接&#xff1a; C OpenGL学习笔记&#xff08;1、Hello World空窗口程序&#xff09; C OpenGL学习笔记&#xff08;2、绘制橙色三角形绘制、绿色随时间变化的三角形绘制&#xff09; C OpenGL学习笔记&#xff08;3、绘制彩色三角形、绘制彩色矩形&#xff09; 通过前面…

被裁20240927 --- 嵌入式硬件开发 前篇

前篇主要介绍一些相关的概念&#xff0c;用于常识扫盲&#xff0c;后篇开始上干货&#xff01; 他捧着一只碗吃过百家的饭 1. 处理器芯片1.1 处理器芯片制造商一、 英特尔&#xff08;Intel&#xff09;二、 三星&#xff08;SAMSUNG&#xff09;三、 高通&#xff08;Qualcomm…

华为EC6108V9/C 通刷固件包,内含高安版及详细教程

该固件的特点包括 调出被屏蔽的功能、无广告和强制升级、精简软件、去除安装限制、支持多种花式功能等。 固件压缩包内有详细刷机教程&#xff1a; 需用特定格式的 8G 品牌 U 盘&#xff0c;导入 4 个文件到根目录&#xff0c;短接特定点&#xff0c;出现升级提示后松开等待…

运维工程师面试系统监控与优化自动化与脚本云计算的理解虚拟化技术的优点和缺点

前些天发现了一个巨牛的人工智能学习网站&#xff0c;通俗易懂&#xff0c;风趣幽默&#xff0c; 忍不住分享一下给大家。点击跳转到网站 学习总结 1、掌握 JAVA入门到进阶知识(持续写作中……&#xff09; 2、学会Oracle数据库入门到入土用法(创作中……&#xff09; 3、手把…

汽车IVI中控开发入门及进阶(47):CarPlay开发

概述: 车载信息娱乐(IVI)系统已经从仅仅播放音乐的设备发展成为现代车辆的核心部件。除了播放音乐,IVI系统还为驾驶员提供导航、通信、空调、电源配置、油耗性能、剩余行驶里程、节能建议和许多其他功能。 ​ 驾驶座逐渐变成了你家和工作场所之外的额外生活空间。2014年,…

Spring(三)-SpringWeb-概述、特点、搭建、运行流程、组件、接受请求、获取请求数据、特殊处理、拦截器

文章目录 一、SpringWeb概述 二、SpringWeb特点 三、搭建SpringWeb&#xff08;在web项目中&#xff09; 1、导包 2、在web.xml文件中配置统一拦截分发器 DispatcherServlet 3、开启 SpringWEB 注解 4、处理器搭建 四、SpringWeb运行流程 五、SpringWeb组件 1、前端控…

Vue2四、 scoped样式冲突,data是一个函数,组件通信-父传子-子传父-非父子

组件通信 1. 父组件通过 props 将数据传递给子组件 2. 子组件利用 $emit 通知父组件修改更新 父--->子 子--->父

LLaMA-Factory(二)界面解析

这里写目录标题 1. 基础选项语言模型选择模型路径微调方法检查点路径量化等级量化方法提示模板RoPE加速方式 2.模型训练界面训练方式数据集超参数设置其他参数部分参数设置LoRA参数设置RLHF参数设置GaLore参数设置BAdam参数设置训练 3.评估预测界面4.Chat界面5.导出Export界面 …

SRE 与 DevOps记录

flashcat https://flashcat.cloud

Python入门:4.Python中的运算符

引言 Python是一间强大而且便捷的编程语言&#xff0c;支持多种类型的运算符。在Python中&#xff0c;运算符被分为算术运算符、赋值运算符、复合赋值运算符、比较运算符和逻辑运算符等。本文将从基础到进阶进行分析&#xff0c;并通过一个综合案例展示其实际应用。 1. 算术运…

蓝桥杯物联网开发板硬件组成

第一节 开发板简介 物联网设计与开发竞赛实训平台由蓝桥杯大赛技术支持单位北京四梯科技有限公司设计和生产&#xff0c;该产品可用于参加蓝桥杯物联网设计与开发赛道的竞赛实训或院校相关课程的 实践教学环节。 开发板基于STM32WLE5无线微控制器设计&#xff0c;芯片提供了25…

ARM异常处理 M33

1. ARMv8-M异常类型及其详细解释 ARMv8-M Exception分为两类&#xff1a;预定义系统异常(015)和外部中断(1616N)。 各种异常的状态可以通过Status bit查看&#xff0c;获取更信息的异常原因&#xff1a; CFSR是由UFSR、BFSR和MMFSR组成&#xff1a; 下面列举HFSR、MMFSR、…

百度热力图数据处理,可直接用于论文

数据简介1、CSV点数据2、SHP数据3、TIF数据4、png图片或标准经纬度出图5、案例6、论文的参考方向 其他数据处理/程序/指导&#xff01;&#xff01;&#xff01;&#xff08;1&#xff09;街景数据获取&#xff08;2&#xff09;街景语义分割后像素提取&#xff0c;指标计算代码…

利用Gurobi追溯模型不可行原因的四种方案及详细案例

文章目录 1. 引言2. 追溯不可行集的四种方法2.1 通过约束增减进行判断2.2 通过computeIIS函数获得冲突集2.3 利用 feasRelaxS() 或 feasRelax() 函数辅助排查2.4 利用 IIS Force 属性1. 引言 模型不可行是一个让工程师头疼的问题,对于复杂模型而言,导致模型不可行的原因可能…

数据流图和流程图的区别

在结构化建模中&#xff0c;数据流图和流程图都是非常重要的工具&#xff0c;它们为开发人员提供了强大的手段来分析和设计系统。尽管两者在表面上看起来有些相似&#xff0c;但它们在功能、用途和表达方式上存在显著的区别。本文将详细探讨数据流图和流程图的区别&#xff0c;…

《计算机组成及汇编语言原理》阅读笔记:p48-p81

《计算机组成及汇编语言原理》学习第 4 天&#xff0c;p48-p81 总结&#xff0c;总计 34 页。 一、技术总结 1.CISC vs RISC p49&#xff0c; complex instruction set computing For example, a complex instruction set computing (CISC) chip may be able to move a lar…

GitLab的安装与卸载

目录 GitLab安装 GitLab使用 使用前可选操作 修改web端口 修改Prometheus端口 使用方法 GitLab的卸载 环境说明 系统版本 CentOS 7.2 x86_64 软件版本 gitlab-ce-10.8.4 GitLab安装 Gitlab的rpm包集成了它需要的软件&#xff0c;简化了安装步骤&#xff0c;所以直接…

LAUNCHXL_F28379D_Workspace_CCS124

/// 安装 controlSUITE C:\ti\controlSUITE\device_support\F2837xD\v210 /// /// /// /// /// 删除 /// /// /// >> Compilation failure source_common/subdir_rules.mk:9: recipe for target source_common/F2837xD_Adc.obj failed "C:/ti/controlSUITE/devic…

封装(2)

大家好&#xff0c;今天我们来介绍一下包的概念&#xff0c;知道包的作用可以更好的面对今后的开发&#xff0c;那么我们就来看看包是什么东西吧。 6.3封装扩展之包 6.3.1包的概念 在面向对象体系中,提出了一个软件包的概念,即:为了更好的管理类,把多个类收集在一起成为一组…

Python 写的 智慧记 进销存 辅助 程序 导入导出 excel 可打印

图样&#xff1a; 就可以导入了 上代码 import tkinter as tk from tkinter import ttk import sqlite3 from datetime import datetime from tkinter import messagebox, filedialog import pandas as pd import reclass OrderSystem:def __init__(self, root):self.root r…