《机器学习》数据预处理简介

目录

1. 数据清洗(Data Cleaning)

(1)处理缺失值

(2)处理异常值

(3)处理重复数据

2. 数据转换(Data Transformation)

(1)特征缩放(Feature Scaling)

(2)对数变换

(3)离散化

(4)编码分类变量

3. 特征工程(Feature Engineering)

(1)特征提取

(2)特征选择

(3)降维

4. 数据分割(Data Splitting)

5. 处理不平衡数据

6. 处理文本数据

7. 处理时间序列数据

8. 数据增强(Data Augmentation)

总结


数据预处理是机器学习中至关重要的一步,它直接影响模型的性能和效果。原始数据通常包含噪声、缺失值、不一致性等问题,因此需要通过预处理将其转化为适合模型训练的格式。以下是常见的数据预处理方法:


1. 数据清洗(Data Cleaning)

数据清洗的目的是处理数据中的噪声、错误和不一致性。

(1)处理缺失值
  • 删除缺失值:如果缺失值比例较高,可以直接删除相关样本或特征。

  • 填充缺失值

    • 使用均值、中位数或众数填充。

    • 使用插值法(如线性插值)。

    • 使用机器学习模型预测缺失值(如K近邻、回归模型)。

(2)处理异常值
  • 删除异常值:如果异常值明显是错误数据,可以直接删除。

  • 修正异常值:根据业务逻辑修正异常值。

  • 保留异常值:如果异常值是合理的(如极端事件),可以保留。

(3)处理重复数据
  • 删除完全重复的样本。


2. 数据转换(Data Transformation)

数据转换的目的是将数据转换为适合模型训练的格式。

(1)特征缩放(Feature Scaling)
  • 标准化(Standardization):将数据转换为均值为0、标准差为1的分布。

    z=x−μσz=σx−μ​
    • 适用于大多数机器学习算法(如线性回归、支持向量机)。

  • 归一化(Normalization):将数据缩放到固定范围(如[0, 1])。

    x′=x−xminxmax−xminx′=xmax​−xmin​x−xmin​​
    • 适用于神经网络、K近邻等算法。

(2)对数变换
  • 对偏态分布的数据进行对数变换,使其更接近正态分布。

(3)离散化
  • 将连续特征转换为离散特征(如将年龄分为“青年”、“中年”、“老年”)。

(4)编码分类变量
  • 独热编码(One-Hot Encoding):将分类变量转换为二进制向量。

    • 适用于无序分类变量。

  • 标签编码(Label Encoding):将分类变量转换为整数标签。

    • 适用于有序分类变量。


3. 特征工程(Feature Engineering)

特征工程的目的是从原始数据中提取有用的特征,以提高模型性能。

(1)特征提取
  • 从原始数据中提取新特征(如从日期中提取“星期几”、“月份”)。

  • 使用领域知识创建特征(如从文本中提取关键词)。

(2)特征选择
  • 过滤法:根据统计指标(如相关系数、卡方检验)选择特征。

  • 包裹法:使用模型评估特征的重要性(如递归特征消除)。

  • 嵌入法:在模型训练过程中选择特征(如L1正则化)。

(3)降维
  • 主成分分析(PCA):将高维数据降维到低维空间,保留主要信息。

  • t-SNE:用于可视化高维数据。

  • 线性判别分析(LDA):在降维的同时保留类别信息。


4. 数据分割(Data Splitting)

将数据集划分为训练集、验证集和测试集,以评估模型的性能。

  • 训练集:用于训练模型。

  • 验证集:用于调整超参数和选择模型。

  • 测试集:用于最终评估模型性能。

常见的分割比例:

  • 训练集:70%

  • 验证集:15%

  • 测试集:15%


5. 处理不平衡数据

当数据集中类别分布不均衡时,需要采取以下方法:

  • 过采样(Oversampling):增加少数类样本(如SMOTE算法)。

  • 欠采样(Undersampling):减少多数类样本。

  • 调整类别权重:在模型训练中为少数类赋予更高的权重。


6. 处理文本数据

文本数据需要特殊的预处理方法:

  • 分词:将文本分割为单词或词组。

  • 去除停用词:去除无意义的词(如“的”、“是”)。

  • 词干提取(Stemming):将单词还原为词干形式。

  • 词向量化

    • 词袋模型(Bag of Words, BoW)

    • TF-IDF

    • 词嵌入(Word Embedding,如Word2Vec、GloVe)


7. 处理时间序列数据

时间序列数据需要特殊的预处理方法:

  • 时间特征提取:从时间戳中提取“小时”、“星期几”等特征。

  • 平滑处理:使用移动平均或指数平滑去除噪声。

  • 差分处理:将非平稳时间序列转换为平稳序列。


8. 数据增强(Data Augmentation)

在数据量不足时,可以通过数据增强生成更多样本:

  • 图像数据:旋转、翻转、裁剪、添加噪声。

  • 文本数据:同义词替换、随机删除单词。


总结

数据预处理是机器学习中不可或缺的一步,它直接影响模型的性能和泛化能力。通过合理的数据清洗、特征工程和数据转换,可以提高模型的准确性和稳定性。根据具体任务和数据特点,选择合适的方法进行预处理是关键。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/497265.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

安卓15预置第三方apk时签名报错问题解决

有同事反馈集成apk时安装失败 PackageManager: Failed to scan /product/app/test: No APK Signature Scheme v2 signature in package /product/app/test/test.apk 查看编译后的apk签名信息 DOES NOT VERIFY ERROR: JAR signer CERT.RSA: JAR signature META-INF/CERT.SF indi…

从0入门自主空中机器人-2-1【无人机硬件框架】

关于本课程: 本次课程是一套面向对自主空中机器人感兴趣的学生、爱好者、相关从业人员的免费课程,包含了从硬件组装、机载电脑环境设置、代码部署、实机实验等全套详细流程,带你从0开始,组装属于自己的自主无人机,并让…

实现某海外大型车企(T)Cabin Wi-Fi 需求的概述 - 4

大家好,我是Q,邮箱:1042484520qq.com。 今天我们在上几讲的基础上再扩展下 Cabin Wi-Fi 的功能需求,讲讲如何使能 5G TCU Wi-Fi STA Bridge 模式。 参考: 实现某海外大型车企(T)Cabin Wi-Fi 需求…

2024 年最新 windows 操作系统搭建部署 nginx 服务器应用详细教程(更新中)

nginx 服务器概述 Nginx 是一款高性能的 HTTP 和 反向代理 服务器,同时是一个 IMAP / POP3 / SMTP 代理服务器。Nginx 凭借其高性能、稳定性、丰富的功能集、简单的配置和低资源消耗而闻名。 浏览 nginx 官网:https://nginx.org/ Nginx 应用场景 静态…

C 实现植物大战僵尸(二)

C 实现植物大战僵尸(二) 前文链接,C 实现植物大战僵尸(一) 五 制作启动菜单 启动菜单函数 void startUI() {IMAGE imageBg, imgMenu1, imgMenu2;loadimage(&imageBg, "res/menu.png");loadimage(&am…

Android笔记(四十一):TabLayout内的tab不滚动问题

背景 假设二级页面是上面图片的布局,当进来时TabLayout和ViewPager2绑定完就马上调setCustomItem,跳转到最后一个tab页面时,会发现tab不滚动,手动滑一下ViewPager2时才会滚动tab到正确的位置 原因分析 调用TabLayoutMediator.at…

域内的三种委派方式

域委派:使得上游服务能使用用户凭据访问下游服务,使得下游服务根据域用户判断权限,例如: web 用户 hack ---------------访问------------------> web 服务器 ( www-data 域服务账户运行)-------------…

GEE云计算、多源遥感、高光谱遥感技术蓝碳储量估算;红树林植被指数计算及提取

大气温室气体浓度不断增加,导致气候变暖加剧,随之会引发一系列气象、生态和环境灾害。如何降低温室气体浓度和应对气候变化已成为全球关注的焦点。海洋是地球上最大的“碳库”,“蓝碳”即海洋活动以及海洋生物(特别是红树林、盐沼和海草&…

module ‘django.db.models‘ has no attribute ‘FieldDoesNotExist‘

module ‘django.db.models’ has no attribute ‘FieldDoesNotExist’ xadmin报错 原因 django与xadmin版本不匹配。 django==3.2.7 xadmin-django==3.0.2解决方案 在xadmin/view/edit.py的388行改为 from django.core import exceptions if self.request_method ==

数据结构(哈希表(中)纯概念版)

前言 哈希表(Hash Table)是计算机科学中的一个基础而重要的数据结构,它广泛评估各种算法和系统中,尤其是在需要快速查找、插入和删除操作的场景中。由于其O( 1)的平均时间复杂度,存储表在性能要求较高的应用中表现得非…

计算机网络 (12)物理层下面的传输媒体

前言 计算机网络物理层下面的传输媒体是计算机网络设备之间的物理通路,也称为传输介质或传输媒介,并不包含在计算机网络体系结构中,而是处于物理层之下。 一、传输媒体的分类 导向型媒体:电磁波被导引沿着固体媒体传播。常见的导向…

PPT画图——如何设置导致图片为600dpi

winr,输入regedit打开注册表 按路径找,HKEY_CURRENT_USER\Software\Microsoft\Office\XX.0\PowerPoint\Options(xx为版本号,16.0 or 15.0或则其他)。名称命名:ExportBitmapResolution 保存即可,…

接口测试的原则、用例与流程

🍅 点击文末小卡片,免费获取软件测试全套资料,资料在手,涨薪更快 一、接口的介绍 软件测试中,常说的接口有两种:图形用户接口(GUI,人与程序的接口)、应用程序编程接口…

Oracle 11G还有新BUG?ORACLE 表空间迷案!

前段时间遇到一个奇葩的问题,在开了SR和oracle support追踪两周以后才算是有了不算完美的结果,在这里整理出来给大家分享。 1.问题描述 12/13我司某基地MES全厂停线,系统卡死不可用,通知到我排查,查看alert log看到是…

测试冰淇淋模型

测试领域的冰淇淋模型(Ice Cream Cone Model)是一个相对于传统的测试金字塔模型的反转,是一种与经典金字塔模型相对的测试策略。在这种模型中,测试的分布和重点与传统金字塔模型相反。以下是冰淇淋模型的主要特点和原因&#xff1…

Quartz任务调度框架实现任务动态执行

说明:之前使用Quartz,都是写好Job,指定一个时间点,到点执行。最近有个需求,需要根据前端用户设置的时间点去执行,也就是说任务执行的时间点是动态变化的。本文介绍如何用Quartz任务调度框架实现任务动态执行…

HarmonyOS Next 实现登录注册页面(ARKTS) 并使用Springboot作为后端提供接口

1. HarmonyOS next ArkTS ArkTS围绕应用开发在 TypeScript (简称TS)生态基础上做了进一步扩展,继承了TS的所有特性,是TS的超集 ArkTS在TS的基础上扩展了struct和很多的装饰器以达到描述UI和状态管理的目的 以下代码是一个基于…

基于 Ragflow 搭建知识库-初步实践

基于 Ragflow 搭建知识库-初步实践 一、简介 Ragflow 是一个强大的工具,可用于构建知识库,实现高效的知识检索和查询功能。本文介绍如何利用 Ragflow 搭建知识库,包括环境准备、安装步骤、配置过程以及基本使用方法。 二、环境准备 硬件要…

加载Tokenizer和基础模型的解析及文件介绍:from_pretrained到底加载了什么?

加载Tokenizer和基础模型的解析及文件介绍 在使用Hugging Face的transformers库加载Tokenizer和基础模型时,涉及到许多文件的调用和解析。这篇博客将详细介绍这些文件的功能和它们在加载过程中的作用,同时结合代码片段进行解析。 下图是我本地下载好模…

链式二叉树的基本操作,前序、中序以及后序遍历(递归实现,非递归实现)【有图解】

文章目录 结点设置二叉树的遍历前序、中序以及后序遍历 递归实现前序、中序以及后序遍历 非递归实现层序遍历 结点的个数叶子结点的个数第k层结点的个数值为x的结点树的最大深度二叉树的销毁 结点设置 既然是链式二叉树,那必须得有自己的结点类型,以下是…