Pytorch | 利用DTA针对CIFAR10上的ResNet分类器进行对抗攻击

Pytorch | 利用DTA针对CIFAR10上的ResNet分类器进行对抗攻击

  • CIFAR数据集
  • DTA介绍
    • 算法流程
  • DTA代码实现
    • DTA算法实现
    • 攻击效果
  • 代码汇总
    • dta.py
    • train.py
    • advtest.py

之前已经针对CIFAR10训练了多种分类器:
Pytorch | 从零构建AlexNet对CIFAR10进行分类
Pytorch | 从零构建Vgg对CIFAR10进行分类
Pytorch | 从零构建GoogleNet对CIFAR10进行分类
Pytorch | 从零构建ResNet对CIFAR10进行分类
Pytorch | 从零构建MobileNet对CIFAR10进行分类
Pytorch | 从零构建EfficientNet对CIFAR10进行分类
Pytorch | 从零构建ParNet对CIFAR10进行分类

也实现了一些攻击算法:
Pytorch | 利用FGSM针对CIFAR10上的ResNet分类器进行对抗攻击
Pytorch | 利用BIM/I-FGSM针对CIFAR10上的ResNet分类器进行对抗攻击
Pytorch | 利用MI-FGSM针对CIFAR10上的ResNet分类器进行对抗攻击
Pytorch | 利用NI-FGSM针对CIFAR10上的ResNet分类器进行对抗攻击
Pytorch | 利用PI-FGSM针对CIFAR10上的ResNet分类器进行对抗攻击
Pytorch | 利用VMI-FGSM针对CIFAR10上的ResNet分类器进行对抗攻击
Pytorch | 利用VNI-FGSM针对CIFAR10上的ResNet分类器进行对抗攻击
Pytorch | 利用EMI-FGSM针对CIFAR10上的ResNet分类器进行对抗攻击
Pytorch | 利用AI-FGTM针对CIFAR10上的ResNet分类器进行对抗攻击
Pytorch | 利用I-FGSSM针对CIFAR10上的ResNet分类器进行对抗攻击
Pytorch | 利用SMI-FGRM针对CIFAR10上的ResNet分类器进行对抗攻击
Pytorch | 利用VA-I-FGSM针对CIFAR10上的ResNet分类器进行对抗攻击
Pytorch | 利用PC-I-FGSM针对CIFAR10上的ResNet分类器进行对抗攻击
Pytorch | 利用IE-FGSM针对CIFAR10上的ResNet分类器进行对抗攻击
Pytorch | 利用GRA针对CIFAR10上的ResNet分类器进行对抗攻击
Pytorch | 利用GNP针对CIFAR10上的ResNet分类器进行对抗攻击
Pytorch | 利用MIG针对CIFAR10上的ResNet分类器进行对抗攻击

本篇文章我们使用Pytorch实现DTA对CIFAR10上的ResNet分类器进行攻击.

CIFAR数据集

CIFAR-10数据集是由加拿大高级研究所(CIFAR)收集整理的用于图像识别研究的常用数据集,基本信息如下:

  • 数据规模:该数据集包含60,000张彩色图像,分为10个不同的类别,每个类别有6,000张图像。通常将其中50,000张作为训练集,用于模型的训练;10,000张作为测试集,用于评估模型的性能。
  • 图像尺寸:所有图像的尺寸均为32×32像素,这相对较小的尺寸使得模型在处理该数据集时能够相对快速地进行训练和推理,但也增加了图像分类的难度。
  • 类别内容:涵盖了飞机(plane)、汽车(car)、鸟(bird)、猫(cat)、鹿(deer)、狗(dog)、青蛙(frog)、马(horse)、船(ship)、卡车(truck)这10个不同的类别,这些类别都是现实世界中常见的物体,具有一定的代表性。

下面是一些示例样本:
在这里插入图片描述

DTA介绍

DTA(Direction Tuning Attack, 方向调整攻击)是一种新型迁移式对抗攻击方法,旨在提高对抗样本的可迁移性。其核心思想是在每次更新迭代中,通过小步长采样多个示例,并使用这些采样示例的平均梯度来更新对抗样本,从而减小实际更新方向与最速更新方向之间的角度,同时减轻更新振荡。

算法流程

  1. 初始化:设置扰动幅度 ϵ \epsilon ϵ、迭代次数 T T T、大步长 α = ϵ / T \alpha=\epsilon/T α=ϵ/T、动量衰减因子 μ 1 \mu_1 μ1、内循环迭代次数 K K K和内循环动量衰减因子 μ 2 \mu_2 μ2。初始化梯度 g 0 = 0 g_0 = 0 g0=0,对抗样本 x 0 a d v = x x^{adv}_0 = x x0adv=x
  2. 外循环(从 t = 0 到 T - 1)
    • 内循环初始化:对于第 t t t次外循环迭代,设置 g t , 0 = g t g_{t,0} = g_t gt,0=gt x t , 0 a d v = x t a d v x^{adv}_{t,0} = x^{adv}_t xt,0adv=xtadv
    • 内循环(从 k = 0 到 K - 1)
      • 前瞻操作(look ahead operation):计算前瞻对抗样本 x t , k n e s x^{nes}_{t,k} xt,knes x t , k n e s = x t , k a d v + α ⋅ μ 1 ⋅ g t , k x^{nes}_{t,k} = x^{adv}_{t,k} + \alpha \cdot \mu_1 \cdot g_{t,k} xt,knes=xt,kadv+αμ1gt,k
      • 计算梯度:计算第 k k k个采样示例的梯度 g t , k + 1 g_{t,k+1} gt,k+1 g t , k + 1 = μ 2 ⋅ g t , k + ∇ x t , k a d v L ( x t , k n e s , y ; θ ) ∥ ∇ x t , k a d v L ( x t , k n e s , y ; θ ) ∥ 1 g_{t,k+1}=\mu _{2}\cdot g_{t,k}+\frac {\nabla _{x_{t,k}^{a d v}} L\left(x_{t, k}^{nes },y ; \theta\right) }{\parallel \nabla _{x_{t, k}^{a d v}} L\left(x_{t, k}^{n e s}, y ; \theta\right) \parallel _{1}} gt,k+1=μ2gt,k+xt,kadvL(xt,knes,y;θ)1xt,kadvL(xt,knes,y;θ),其中 μ 2 \mu_2 μ2是内循环中 g t , k g_{t,k} gt,k的衰减因子, x t , k a d v x^{adv}_{t,k} xt,kadv表示第 k k k个采样示例, ∇ x t , k a d v L ( x t , k n e s , y ; θ ) \nabla_{x_{t,k}^{adv}} L\left(x_{t, k}^{nes },y ; \theta\right) xt,kadvL(xt,knes,y;θ)是在 x t , k n e s x^{nes}_{t,k} xt,knes处的损失函数关于 x x x的梯度。
      • 更新采样示例:使用小步长 α K \frac{\alpha}{K} Kα更新采样示例 x t , k + 1 a d v x^{adv}_{t,k+1} xt,k+1adv x t , k + 1 a d v = C l i p x ϵ { x t , k a d v + α K ⋅ s i g n ( g t , k + 1 ) } x_{t, k+1}^{a d v}=Clip_{x}^{\epsilon}\left\{x_{t, k}^{a d v}+\frac{\alpha}{K} \cdot sign\left(g_{t, k+1}\right)\right\} xt,k+1adv=Clipxϵ{xt,kadv+Kαsign(gt,k+1)},其中 C l i p x ϵ ( ⋅ ) Clip_{x}^{\epsilon}(\cdot) Clipxϵ()函数将更新后的示例限制在以 x x x为中心、半径为 ϵ \epsilon ϵ的范围内。
    • 计算平均梯度:计算内循环中 K K K个采样示例的平均梯度, g t + 1 = μ 1 ⋅ g t + ∑ k = 1 K g t , k K g_{t+1}=\mu _{1}\cdot g_{t}+\frac{\sum_{k=1}^{K} g_{t, k}}{K} gt+1=μ1gt+Kk=1Kgt,k
    • 更新对抗样本:使用大步长 α \alpha α和平均梯度 g t + 1 g_{t+1} gt+1更新对抗样本 x t + 1 a d v x^{adv}_{t+1} xt+1adv x t + 1 a d v = C l i p x ϵ { x t a d v + α ⋅ s i g n ( g t + 1 ) } x_{t+1}^{a d v}=Clip_{x}^{\epsilon}\left\{x_{t}^{a d v}+\alpha \cdot sign\left(g_{t+1}\right)\right\} xt+1adv=Clipxϵ{xtadv+αsign(gt+1)}
  3. 输出:经过 T T T次迭代后,输出最终的对抗样本 x a d v = x T a d v x^{adv}=x^{adv}_T xadv=xTadv

DTA代码实现

DTA算法实现

import torch
import torch.nn as nndef DTA(model, criterion, original_images, labels, epsilon, num_iterations=10, decay1=1.0, decay2=0.0, K=10):"""DTA (Direction Tuning Attack)参数:- model: 要攻击的模型- criterion: 损失函数- original_images: 原始图像- labels: 原始图像的标签- epsilon: 最大扰动幅度- num_iterations: 外循环迭代次数- decay: 动量衰减因子- K: 内循环迭代次数"""# 计算大步长alphaalpha = epsilon / num_iterations# 复制原始图像作为初始的对抗样本perturbed_images = original_images.clone().detach().requires_grad_(True)momentum = torch.zeros_like(original_images).detach().to(original_images.device)for t in range(num_iterations):inner_gradients = []sample_gradient = momentumfor k in range(K):# 计算前瞻对抗样本x_adv_lookahead = perturbed_images + alpha * decay1 * momentum# 计算损失x_adv_lookahead = x_adv_lookahead.clone().detach().requires_grad_(True)outputs = model(x_adv_lookahead)loss = criterion(outputs, labels)model.zero_grad()loss.backward()# 计算梯度data_grad = x_adv_lookahead.grad.datasample_gradient = decay2 * sample_gradient + data_grad / torch.sum(torch.abs(data_grad), dim=(1, 2, 3), keepdim=True)inner_gradients.append(sample_gradient)# 更新采样示例perturbed_images = perturbed_images + (alpha / K) * torch.sign(sample_gradient)perturbed_images = torch.clamp(perturbed_images, original_images - epsilon, original_images + epsilon)perturbed_images = perturbed_images.detach().requires_grad_(True)# 更新动量momentum = decay1 * momentum + sum(inner_gradients) / K# 更新对抗样本perturbed_images = perturbed_images + alpha * momentum.sign()perturbed_images = torch.clamp(perturbed_images, original_images - epsilon, original_images + epsilon)perturbed_images = perturbed_images.detach().requires_grad_(True)return perturbed_images

攻击效果

为节省时间,这里取 K=1,实际中可取 K=10.
在这里插入图片描述

代码汇总

dta.py

import torch
import torch.nn as nndef DTA(model, criterion, original_images, labels, epsilon, num_iterations=10, decay1=1.0, decay2=0.0, K=10):"""DTA (Direction Tuning Attack)参数:- model: 要攻击的模型- criterion: 损失函数- original_images: 原始图像- labels: 原始图像的标签- epsilon: 最大扰动幅度- num_iterations: 外循环迭代次数- decay: 动量衰减因子- K: 内循环迭代次数"""# 计算大步长alphaalpha = epsilon / num_iterations# 复制原始图像作为初始的对抗样本perturbed_images = original_images.clone().detach().requires_grad_(True)momentum = torch.zeros_like(original_images).detach().to(original_images.device)for t in range(num_iterations):inner_gradients = []sample_gradient = momentumfor k in range(K):# 计算前瞻对抗样本x_adv_lookahead = perturbed_images + alpha * decay1 * momentum# 计算损失x_adv_lookahead = x_adv_lookahead.clone().detach().requires_grad_(True)outputs = model(x_adv_lookahead)loss = criterion(outputs, labels)model.zero_grad()loss.backward()# 计算梯度data_grad = x_adv_lookahead.grad.datasample_gradient = decay2 * sample_gradient + data_grad / torch.sum(torch.abs(data_grad), dim=(1, 2, 3), keepdim=True)inner_gradients.append(sample_gradient)# 更新采样示例perturbed_images = perturbed_images + (alpha / K) * torch.sign(sample_gradient)perturbed_images = torch.clamp(perturbed_images, original_images - epsilon, original_images + epsilon)perturbed_images = perturbed_images.detach().requires_grad_(True)# 更新动量momentum = decay1 * momentum + sum(inner_gradients) / K# 更新对抗样本perturbed_images = perturbed_images + alpha * momentum.sign()perturbed_images = torch.clamp(perturbed_images, original_images - epsilon, original_images + epsilon)perturbed_images = perturbed_images.detach().requires_grad_(True)return perturbed_images

train.py

import torch
import torch.nn as nn
import torchvision
import torchvision.transforms as transforms
from models import ResNet18# 数据预处理
transform_train = transforms.Compose([transforms.RandomCrop(32, padding=4),transforms.RandomHorizontalFlip(),transforms.ToTensor(),transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010))
])transform_test = transforms.Compose([transforms.ToTensor(),transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010))
])# 加载Cifar10训练集和测试集
trainset = torchvision.datasets.CIFAR10(root='./data', train=True, download=False, transform=transform_train)
trainloader = torch.utils.data.DataLoader(trainset, batch_size=128, shuffle=True, num_workers=2)testset = torchvision.datasets.CIFAR10(root='./data', train=False, download=False, transform=transform_test)
testloader = torch.utils.data.DataLoader(testset, batch_size=100, shuffle=False, num_workers=2)# 定义设备(GPU或CPU)
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")# 初始化模型
model = ResNet18(num_classes=10)
model.to(device)# 定义损失函数和优化器
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.parameters(), lr=0.01)if __name__ == "__main__":# 训练模型for epoch in range(10):  # 可以根据实际情况调整训练轮数running_loss = 0.0for i, data in enumerate(trainloader, 0):inputs, labels = data[0].to(device), data[1].to(device)optimizer.zero_grad()outputs = model(inputs)loss = criterion(outputs, labels)loss.backward()optimizer.step()running_loss += loss.item()if i % 100 == 99:print(f'Epoch {epoch + 1}, Batch {i + 1}: Loss = {running_loss / 100}')running_loss = 0.0torch.save(model.state_dict(), f'weights/epoch_{epoch + 1}.pth')print('Finished Training')

advtest.py

import torch
import torch.nn as nn
import torchvision
import torchvision.transforms as transforms
from models import *
from attacks import *
import ssl
import os
from PIL import Image
import matplotlib.pyplot as pltssl._create_default_https_context = ssl._create_unverified_context# 定义数据预处理操作
transform = transforms.Compose([transforms.ToTensor(),transforms.Normalize((0.491, 0.482, 0.446), (0.247, 0.243, 0.261))])# 加载CIFAR10测试集
testset = torchvision.datasets.CIFAR10(root='./data', train=False,download=False, transform=transform)
testloader = torch.utils.data.DataLoader(testset, batch_size=128,shuffle=False, num_workers=2)# 定义设备(GPU优先,若可用)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")model = ResNet18(num_classes=10).to(device)criterion = nn.CrossEntropyLoss()# 加载模型权重
weights_path = "weights/epoch_10.pth"
model.load_state_dict(torch.load(weights_path, map_location=device))if __name__ == "__main__":# 在测试集上进行FGSM攻击并评估准确率model.eval()  # 设置为评估模式correct = 0total = 0epsilon = 16 / 255  # 可以调整扰动强度for data in testloader:original_images, labels = data[0].to(device), data[1].to(device)original_images.requires_grad = Trueattack_name = 'DTA'if attack_name == 'FGSM':perturbed_images = FGSM(model, criterion, original_images, labels, epsilon)elif attack_name == 'BIM':perturbed_images = BIM(model, criterion, original_images, labels, epsilon)elif attack_name == 'MI-FGSM':perturbed_images = MI_FGSM(model, criterion, original_images, labels, epsilon)elif attack_name == 'NI-FGSM':perturbed_images = NI_FGSM(model, criterion, original_images, labels, epsilon)elif attack_name == 'PI-FGSM':perturbed_images = PI_FGSM(model, criterion, original_images, labels, epsilon)elif attack_name == 'VMI-FGSM':perturbed_images = VMI_FGSM(model, criterion, original_images, labels, epsilon)elif attack_name == 'VNI-FGSM':perturbed_images = VNI_FGSM(model, criterion, original_images, labels, epsilon)elif attack_name == 'EMI-FGSM':perturbed_images = EMI_FGSM(model, criterion, original_images, labels, epsilon)elif attack_name == 'AI-FGTM':perturbed_images = AI_FGTM(model, criterion, original_images, labels, epsilon)elif attack_name == 'I-FGSSM':perturbed_images = I_FGSSM(model, criterion, original_images, labels, epsilon)elif attack_name == 'SMI-FGRM':perturbed_images = SMI_FGRM(model, criterion, original_images, labels, epsilon)elif attack_name == 'VA-I-FGSM':perturbed_images = VA_I_FGSM(model, criterion, original_images, labels, epsilon)elif attack_name == 'PC-I-FGSM':perturbed_images = PC_I_FGSM(model, criterion, original_images, labels, epsilon)elif attack_name == 'IE-FGSM':perturbed_images = IE_FGSM(model, criterion, original_images, labels, epsilon)elif attack_name == 'GRA':perturbed_images = GRA(model, criterion, original_images, labels, epsilon)elif attack_name == 'GNP':perturbed_images = GNP(model, criterion, original_images, labels, epsilon)elif attack_name == 'MIG':perturbed_images = MIG(model, original_images, labels, epsilon)elif attack_name == 'DTA':perturbed_images = DTA(model, criterion, original_images, labels, epsilon)perturbed_outputs = model(perturbed_images)_, predicted = torch.max(perturbed_outputs.data, 1)total += labels.size(0)correct += (predicted == labels).sum().item()accuracy = 100 * correct / total# Attack Success RateASR = 100 - accuracyprint(f'Load ResNet Model Weight from {weights_path}')print(f'epsilon: {epsilon:.4f}')print(f'ASR of {attack_name} : {ASR :.2f}%')

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/500496.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

攻防世界web第六题upload1

这是题目&#xff0c;可以看出是个上传文件的题目&#xff0c;考虑文件上传漏洞&#xff0c;先随便上传一个文件试试&#xff0c;要求上传的是图片。 可以看到上传成功。 考虑用一句话木马解决&#xff0c;构造文件并修改后缀为jpg,然后上传。 <?php eval($_POST[attack])…

python数据分析:使用pandas库读取和编辑Excel表

使用 Pandas&#xff0c;我们可以轻松地读取和写入Excel 文件&#xff0c;之前文章我们介绍了其他多种方法。 使用前确保已经安装pandas和 openpyxl库&#xff08;默认使用该库处理Excel文件&#xff09;。没有安装的可以使用pip命令安装&#xff1a; pip install pandas ope…

SpringCloud源码分析-LoadBalancer

# 负载均衡缓存 org.springframework.cloud.loadbalancer.cache.DefaultLoadBalancerCache # 缓存服务实例提供 org.springframework.cloud.loadbalancer.core.CachingServiceInstanceListSupplier 负载均衡实例中没有机器列表时&#xff0c;都会查询一次org.springframewor…

Postman[2] 入门——界面介绍

可参考官方 文档 Postman 导航 | Postman 官方帮助文档中文版Postman 拥有各种工具、视图和控件&#xff0c;帮助你管理 API 项目。本指南是对 Postman 主要界面区域的高级概述&#xff1a;https://postman.xiniushu.com/docs/getting-started/navigating-postman 1. Header&a…

大数据技术-Hadoop(三)Mapreduce的介绍与使用

目录 一、概念和定义 二、WordCount案例 1、WordCountMapper 2、WordCountReducer 3、WordCountDriver 三、序列化 1、为什么序列化 2、为什么不用Java的序列化 3、Hadoop序列化特点&#xff1a; 4、自定义bean对象实现序列化接口&#xff08;Writable&#xff09; 4…

Python爬取城市天气信息,并存储到csv文件中

1.爬取的网址为&#xff1a;天气网 (weather.com.cn) 2.需要建立Weather.txt文件&#xff0c;并在里面加入如下形式的字段&#xff1a; 101120701济宁 101010100北京 3.代码运行后&#xff0c;在命令行输入Weather.txt文件中添加过的城市&#xff0c;如&#xff1a;济宁。 …

CentOS Stream 9 安装 JDK

安装前检查 java --version注&#xff1a;此时说明已安装过JDK&#xff0c;否则为未安装。如若已安装过JDK可以跳过安装步骤直接使用&#xff0c;或者先卸载已安装的JDK版本重新安装。 安装JDK 官网下载地址&#xff1a;https://www.oracle.com/java/technologies/downloads…

win11 vs2022 opencv 4.10使用vs Image Watch插件实时可视化内存mat对象

这个本来是非开源工业软件HALCON的一个功能&#xff0c;方便提升图像识别开发效率。原以为opencv没有&#xff0c;需要通过进程间共享内存的方式去实现。 结果在官网帮助文档中发现已经提供了。 opencv 4.10帮助文档https://docs.opencv.org/4.10.0/index.htmlOpenCV Tutorial…

C#Halcon深度学习预热与否的运行时间测试

在深度学习推理应用阶段&#xff0c;涉及到提速&#xff0c;绕不开一个关键词“预热”。 在其他地方的“预热”&#xff0c;预先加热到指定的温度。通常指预习准备做某一样事时&#xff0c;为此做好准备。 而在深度学习推理应用阶段涉及的预热通常是指GPU预热&#xff0c;GPU在…

STM32-笔记18-呼吸灯

1、实验目的 使用定时器 4 通道 3 生成 PWM 波控制 LED1 &#xff0c;实现呼吸灯效果。 频率&#xff1a;2kHz&#xff0c;PSC71&#xff0c;ARR499 利用定时器溢出公式 周期等于频率的倒数。故Tout 1/2KHZ&#xff1b;Ft 72MHZ PSC71&#xff08;喜欢设置成Ft的倍数&…

OCR实践-问卷表格统计

前言 书接上文 OCR实践—PaddleOCROCR实践-Table-Transformer 本项目代码已开源 放在 Github上&#xff0c;欢迎参考使用&#xff0c;Star https://github.com/caibucai22/TableAnalysisTool 主要功能说明&#xff1a;对手动拍照的问卷图片进行统计分数&#xff08;对应分数…

使用pandas把数据库中的数据转成csv文件

使用pandas把数据库中的数据转成csv文件 1、效果图 2、流程 1、连接数据库,获取数据 2、把一些中文字符转成gbk,忽略掉无法转化的 3、把数据转成csv 3、代码 import pymysql import pandas as pddef get_database(databasename):

windows下vscode使用msvc编译器出现中文乱码

文章目录 [toc]1、概述2、修改已创建文件编码3、修改vscode默认编码 更多精彩内容&#x1f449;内容导航 &#x1f448;&#x1f449;C &#x1f448;&#x1f449;开发工具 &#x1f448; 1、概述 在使用MSVC编译器时&#xff0c;出现中文报错的问题可能与编码格式有关。UTF-…

传统听写与大模型听写比对

在快节奏的现代生活中&#xff0c;听写技能仍然是学习语言和提升认知能力的重要环节。然而&#xff0c;传统的听写练习往往枯燥乏味&#xff0c;且效率不高。现在&#xff0c;随着人工智能技术的发展&#xff0c;大模型听写工具的问世&#xff0c;为传统听写带来了革命性的变革…

前端页面上传文件:解决 ERR_UPLOAD_FILE_CHANGED

文章目录 引言I 问题 ERR_UPLOAD_FILE_CHANGED问题重现步骤原因II 解决方法将文件转换为base64再转回file检测文件内容是否发生变更III 知识扩展发送一个包含文件和文本的multipart/form-data请求签名优化引言 文件上传应用场景:船舶设备的新增导入(基础信息:出厂编号)船舶…

图文教程:使用PowerDesigner导出数据库表结构为Word/Html文档

1、第一种情况-无数据库表&#xff0c;但有数据模型 1.1 使用PowerDesigner已完成数据建模 您已经使用PowerDesigner完成数据库建模&#xff0c;如下图&#xff1a; 1.2 Report配置和导出 1、点击&#xff1a;Report->Reports&#xff0c;如下图&#xff1a; 2、点击&…

vscode 多项目冲突:进行 vscode 工作区配置

问题&#xff1a;多个项目&#xff0c;每次打开会因为配置问题/包版本冲突&#xff0c;花费过长时间。 解决&#xff1a;可以通过启用工作区&#xff0c;使得各个项目的开发环境隔离。 vscode官网 对此有两种方法&#xff1a;方法一&#xff1a;启用工作区&#xff08;workspa…

试用ChatGPT的copilot编写一个程序从笔记本电脑获取语音输入和图像输入并调用开源大模型进行解析

借助copilot写代码和自己手写代码的开发过程是一样的。 首先要有明确的开发需求&#xff0c;开发需求越详细&#xff0c;copilot写出的代码才能越符合我们的预期。 其次&#xff0c;有了明确的需求&#xff0c;最好先做下需求拆解&#xff0c;特别是对于比较复杂的应用&#xf…

快速掌握Elasticsearch检索之二:滚动查询(scrool)获取全量数据(golang)

Elasticsearch8.17.0在mac上的安装 Kibana8.17.0在mac上的安装 Elasticsearch检索方案之一&#xff1a;使用fromsize实现分页 1、滚动查询的使用场景 滚动查询区别于上一篇文章介绍的使用from、size分页检索&#xff0c;最大的特点是&#xff0c;它能够检索超过10000条外的…

【分布式文件存储系统Minio】2024.12保姆级教程

文章目录 1.介绍1.分布式文件系统2.基本概念 2.环境搭建1.访问网址2.账号密码都是minioadmin3.创建一个桶4.**Docker安装miniomc突破7天限制**1.拉取镜像2.运行容器3.进行配置1.格式2.具体配置 4.查看桶5.给桶开放权限 3.搭建minio模块1.创建一个oss模块1.在sun-common下创建2.…