.net core 线程锁,互斥锁,自旋锁,混合锁

线程锁、互斥锁、自旋锁和混合锁是多线程编程中的重要概念,它们用于控制对共享资源的访问,避免数据竞争和不一致性。每种锁有其特定的适用场景和特点。我们来逐一解释它们,并进行比较。

1. 线程锁(Thread Lock)

线程锁的概念泛指任何用于同步多线程访问共享资源的机制。它的目的是确保在同一时刻只有一个线程可以访问资源,从而避免多个线程并发访问时发生数据竞争(race condition)或资源不一致。

线程锁通常是通过以下几种锁机制来实现的:

  • 互斥锁(Mutex)
  • 自旋锁(SpinLock)
  • 读写锁(ReadWriteLock)
  • 信号量(Semaphore)
  • 临界区(CriticalSection)

不同类型的锁有不同的实现方式和适用场景。

2. 互斥锁(Mutex)

互斥锁(Mutex)是一种最常见的同步原语,用于控制对共享资源的访问。它的基本思想是:如果一个线程已经获得了锁,其他线程必须等待,直到锁被释放,才能继续执行。

特点
  • 线程阻塞:当一个线程尝试获取互斥锁时,如果锁已被其他线程持有,线程会被挂起,直到锁可用为止。
  • 适用于长时间持有锁的情况:如果临界区代码较长,或线程会执行大量计算时,使用互斥锁能有效避免 CPU 资源的浪费。
  • 系统开销较高:挂起和恢复线程的操作比自旋等待更消耗系统资源。
示例:C# 中的 lock(实际上是基于 Monitor 的实现)
class Program
{private static readonly object lockObj = new object();private static int counter = 0;static void Main(){Thread thread1 = new Thread(IncrementCounter);Thread thread2 = new Thread(IncrementCounter);thread1.Start();thread2.Start();thread1.Join();thread2.Join();Console.WriteLine("Final counter value: " + counter);}static void IncrementCounter(){lock (lockObj)  // 获取锁{counter++;  // 临界区Console.WriteLine($"Thread {Thread.CurrentThread.ManagedThreadId} incremented counter to {counter}");}}
}

3. 自旋锁(SpinLock)

自旋锁是一种非常轻量级的同步机制,线程在尝试获取锁时,不会被挂起,而是会在一个循环中不断检查锁是否已经释放。线程会不断“自旋”并消耗 CPU 时间,直到获得锁。

特点
  • 忙等待:当一个线程请求自旋锁时,如果锁已经被其他线程持有,它会不断地检查锁是否已被释放,这种行为被称为“自旋”。
  • 适用于锁持有时间短的场景:当临界区代码执行时间非常短时,自旋锁可以避免线程挂起和恢复的高开销。
  • CPU 资源消耗较高:如果锁持有时间较长,多个线程可能会造成大量 CPU 资源的浪费。
示例:C# 中的 SpinLock
using System;
using System.Threading;class Program
{private static SpinLock spinLock = new SpinLock();private static int counter = 0;static void Main(){Thread thread1 = new Thread(IncrementCounter);Thread thread2 = new Thread(IncrementCounter);thread1.Start();thread2.Start();thread1.Join();thread2.Join();Console.WriteLine("Final counter value: " + counter);}static void IncrementCounter(){bool lockTaken = false;try{spinLock.Enter(ref lockTaken);  // 获取锁counter++;  // 临界区Console.WriteLine($"Thread {Thread.CurrentThread.ManagedThreadId} incremented counter to {counter}");}finally{if (lockTaken)spinLock.Exit();  // 释放锁}}
}

4. 混合锁(Hybrid Lock)

混合锁是一种结合了互斥锁和自旋锁的锁机制,它通常用于试图在自旋锁和互斥锁之间根据具体情况进行切换,旨在提高多线程程序的效率。

混合锁的思想是:

  1. 自旋锁:在锁争用轻微、临界区代码执行时间短的情况下,使用自旋锁来减少线程挂起带来的性能开销。
  2. 互斥锁:如果自旋锁的时间过长,系统会自动切换为互斥锁,这样线程会被挂起,避免浪费过多 CPU 时间。
特点
  • 适应性强:混合锁通过平衡自旋和线程挂起的开销,避免在锁争用过于严重时造成资源浪费。
  • 自动调整:当争用变得严重时,混合锁会自动切换为互斥锁,而在争用轻微时,它会使用自旋来避免不必要的开销。
示例:C# 中没有直接的混合锁类,但可以通过自定义逻辑来实现类似功能。
using System;
using System.Threading;class Program
{private static SpinLock spinLock = new SpinLock();private static object mutex = new object();private static int counter = 0;static void Main(){Thread thread1 = new Thread(IncrementCounter);Thread thread2 = new Thread(IncrementCounter);thread1.Start();thread2.Start();thread1.Join();thread2.Join();Console.WriteLine("Final counter value: " + counter);}static void IncrementCounter(){bool lockTaken = false;try{// 尝试自旋锁if (!spinLock.TryEnter(100))  // 如果锁在 100ms 内未被获取{// 自旋失败,使用互斥锁lock (mutex){counter++;Console.WriteLine($"Thread {Thread.CurrentThread.ManagedThreadId} incremented counter to {counter}");}}else{// 获取自旋锁counter++;Console.WriteLine($"Thread {Thread.CurrentThread.ManagedThreadId} incremented counter to {counter}");}}finally{if (lockTaken)spinLock.Exit();}}
}

自旋锁、互斥锁和混合锁的比较

特性/锁类型互斥锁(Mutex)自旋锁(SpinLock)混合锁(Hybrid Lock)
锁获取方式阻塞,线程被挂起自旋,线程忙等待锁根据锁的争用情况自旋或阻塞
适用场景锁持有时间长、锁竞争激烈的情况锁持有时间短、锁竞争轻的情况锁持有时间变化,既有自旋又有阻塞
性能开销较高,线程挂起与恢复开销较大较低,但如果竞争严重会浪费 CPU 资源较低,可以根据情况自动调整
适用性多线程竞争较高的场景低竞争、锁持有时间短的场景高竞争情况下动态选择锁类型
总结
  • 互斥锁 适用于锁持有时间较长、竞争激烈的场景,能有效避免资源争用,但可能会导致性能瓶颈。
  • 自旋锁 适用于锁持有时间非常短的场景,能够避免线程上下文切换的开销,但如果锁争用严重,可能会浪费大量 CPU 资源。
  • 混合锁 结合了自旋锁和互斥锁的优点,能根据锁争用情况动态选择自旋或挂起,从而提供更好的性能和适应性。

选择哪种锁取决于具体的应用场景和性能需求。在高并发、高竞争的环境中,混合锁可能是最优选择,而在低竞争或快速临界区的情况下,自旋锁也许是最合适的。

5.信号量

信号量(Semaphore) 是一种用于多线程编程中的同步机制,用于控制对共享资源的访问,特别是在资源数量有限时,它能够限制并发访问的线程数目。信号量通过维护一个计数器来管理线程的访问。线程在进入临界区之前,需要检查信号量的计数值,只有计数值大于零时,线程才能进入;当线程完成工作后,信号量的计数值会增加,允许其他线程进入。

信号量的基本概念
  • 计数器:信号量内部有一个整数计数器,表示可用的资源数量或允许并发执行的线程数。
  • P操作(或称为 Wait 或 Acquire):线程尝试减少信号量的计数器。如果信号量的计数器大于零,线程会成功进入临界区,计数器减一。如果计数器为零,线程会被阻塞,直到计数器大于零。
  • V操作(或称为 Signal 或 Release):线程在完成工作后,增加信号量的计数器,允许其他被阻塞的线程继续执行。
信号量的类型
  1. 计数信号量(Counting Semaphore):计数信号量的计数器值可以是任意非负整数,表示允许访问的资源数量或线程数。例如,如果有 5 个资源或 5 个线程可以并发执行,信号量的初始值为 5。每当一个线程获得资源时,计数器减一,释放资源时计数器加一。

  2. 二值信号量(Binary Semaphore):二值信号量是计数信号量的一种特殊情况,计数器值仅为 0 或 1。它常常用于控制一个线程的互斥访问,类似于互斥锁(Mutex)。二值信号量也被称为 互斥信号量,因为它的行为与互斥锁非常相似。

信号量的应用场景
  • 控制并发访问:信号量通常用于控制某些资源的并发访问,限制同时访问某些共享资源的线程数。例如,数据库连接池中的数据库连接数有限,信号量可以用来确保不超过最大连接数。

  • 限制资源数量:例如,线程池中只允许一定数量的线程同时运行任务,超出限制的线程会被阻塞,直到其他线程完成任务并释放资源。

  • 线程同步:在一些需要线程同步的场景中,信号量可以用来控制线程的执行顺序或协调多个线程之间的操作。

示例:C# 中使用信号量

假设我们有一个共享的数据库连接池,最多只允许 3 个线程同时访问数据库。我们可以使用信号量来限制并发访问。

using System;
using System.Threading;class Program
{// 初始化信号量,最多允许 3 个线程并发访问private static Semaphore semaphore = new Semaphore(3, 3); static void Main(){// 创建并启动 5 个线程for (int i = 0; i < 5; i++){int threadId = i;Thread thread = new Thread(() => AccessDatabase(threadId));thread.Start();}}static void AccessDatabase(int threadId){Console.WriteLine($"Thread {threadId} trying to access database...");// 尝试获取信号量semaphore.WaitOne();  // 如果信号量计数器大于 0,则进入临界区,计数器减 1try{Console.WriteLine($"Thread {threadId} is accessing the database.");Thread.Sleep(2000);  // 模拟数据库访问操作Console.WriteLine($"Thread {threadId} is done with the database.");}finally{// 释放信号量semaphore.Release();  // 释放资源,信号量计数器加 1}}
}
代码解释
  1. 信号量初始化:我们使用 Semaphore(3, 3) 来创建一个信号量,初始值为 3,表示最多允许 3 个线程同时访问共享资源(这里是模拟的数据库连接)。信号量的最大值也是 3,意味着最多只能有 3 个线程持有信号量。

  2. 线程尝试访问资源:每个线程在访问数据库之前调用 semaphore.WaitOne() 来尝试获取信号量。如果信号量的计数器大于 0,线程就能成功获得信号量并进入临界区,计数器减 1;如果计数器为 0,线程会被阻塞,直到其他线程释放信号量。

  3. 线程完成后释放信号量:在 finally 块中,线程完成工作后调用 semaphore.Release() 来释放信号量,允许其他线程访问共享资源。此时,信号量计数器加 1。

信号量与其他同步机制的比较
特性/机制信号量(Semaphore)互斥锁(Mutex)读写锁(ReadWriteLock)自旋锁(SpinLock)
锁粒度用于控制资源数量用于单个资源的互斥访问分别对读和写操作加锁轻量级的锁,用于短时间临界区
适用场景控制资源数量,限流,多线程并发访问防止多线程同时访问共享资源允许多个读者同时访问,写者互斥高并发且锁持有时间短的场景
阻塞方式阻塞线程或继续执行阻塞线程阻塞线程自旋,直到获得锁
优点控制并发数量,灵活高效确保资源的独占访问提高读取性能,允许并发读取轻量级,减少上下文切换的开销
总结

信号量是一种用于控制并发访问共享资源的同步工具,特别适用于资源数量有限的场景。它通过计数器来控制允许访问的线程数量,支持灵活的线程同步与调度。根据资源需求,信号量能够控制多个线程的并发执行,避免资源争用和冲突。

6.读写锁

读写锁是一种特殊类型的锁,它允许多个线程同时读取共享数据,但在写操作时,只能有一个线程进行写操作,而且在写操作时,其他线程不能进行读操作或写操作。读写锁旨在提高读操作多、写操作少的场景下的性能,尤其是在数据读取频繁而修改较少的情况下。

读写锁的工作原理
  • 读锁:多个线程可以同时持有读锁,只要没有线程持有写锁。读锁不会阻止其他线程获取读锁。
  • 写锁:写锁是排他性的,只有一个线程可以持有写锁。并且在持有写锁时,所有其他线程(无论是读锁还是写锁)都不能访问共享资源。
  • 读写锁的基本设计思想是:在没有写操作的情况下,允许多个线程并发读取;但是一旦有写操作开始,必须保证其他线程都无法访问资源。

C# 中的 ReaderWriterLockSlim

在 C# 中,ReaderWriterLockSlim 类提供了类似的功能,用于处理并发读写操作。

  • EnterReadLock():获取读锁,允许多个线程并发读取。
  • EnterWriteLock():获取写锁,排他性锁定,阻塞所有读写操作。
using System;
using System.Threading;class Program
{static ReaderWriterLockSlim rwLock = new ReaderWriterLockSlim();static int sharedResource = 0;static void Main(){// 创建并发读取的线程Thread readThread1 = new Thread(() =>{rwLock.EnterReadLock();  // 获取读锁try{Console.WriteLine("Read Thread 1: " + sharedResource);}finally{rwLock.ExitReadLock();  // 释放读锁}});Thread readThread2 = new Thread(() =>{rwLock.EnterReadLock();  // 获取读锁try{Console.WriteLine("Read Thread 2: " + sharedResource);}finally{rwLock.ExitReadLock();  // 释放读锁}});// 创建写线程Thread writeThread = new Thread(() =>{rwLock.EnterWriteLock();  // 获取写锁try{sharedResource++;Console.WriteLine("Write Thread: " + sharedResource);}finally{rwLock.ExitWriteLock();  // 释放写锁}});// 启动线程readThread1.Start();readThread2.Start();writeThread.Start();}
}
读写锁的优势和适用场景
优势:
  1. 提高并发性能:当读操作频繁而写操作较少时,使用读写锁可以显著提高系统的并发性能。多个线程可以同时进行读操作,而无需等待锁的释放。
  2. 减少锁竞争:由于读操作不互斥,可以避免频繁的锁竞争,尤其在读操作占主导的场景中。
  3. 提供更细粒度的控制:相比传统的互斥锁(如 ReentrantLock),读写锁提供了更细粒度的锁机制,让读写操作更加高效。
适用场景:
  • 读多写少的场景:比如缓存、日志读取、数据库查询等,系统中的大多数操作是读操作,少量写操作。
  • 高并发读取:需要多个线程频繁读取共享资源,但写操作较少的应用(例如 Web 应用中的数据查询)。
  • 低并发写操作:确保在写操作发生时,不会有其他线程同时执行读操作,保持数据一致性。
需要注意的问题:
  1. 写操作可能会阻塞读操作:如果有大量的读操作而只有少数的写操作,写操作会造成较长时间的阻塞,导致性能下降。
  2. 死锁风险:在设计并发系统时,如果不小心使用了写锁嵌套或读锁嵌套,可能会导致死锁。
总结
  • 读写锁的设计旨在提高系统的并发性,特别是在读多写少的场景下。通过区分读锁和写锁,读写锁允许多个线程并行读操作,但写操作则是排他性的。
  • 它适用于需要大量读取操作且写操作相对较少的场景,可以有效减少线程之间的锁竞争,提高系统的性能。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/501211.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Python应用指南:高德交通态势数据

在现代城市的脉络中&#xff0c;交通流量如同流动的血液&#xff0c;交通流量的动态变化对出行规划和城市管理提出了更高的要求。为了应对这一挑战&#xff0c;高德地图推出了交通态势查询API&#xff0c;旨在为开发者提供一个强大的工具&#xff0c;用于实时获取指定区域或道路…

整合版canal ha搭建--基于1.1.4版本

开启MySql Binlog&#xff08;1&#xff09;修改MySql配置文件&#xff08;2&#xff09;重启MySql服务,查看配置是否生效&#xff08;3&#xff09;配置起效果后&#xff0c;创建canal用户&#xff0c;并赋予权限安装canal-admin&#xff08;1&#xff09;解压 canal.admin-1…

物联网控制期末复习

第3章 物联网控制系统的过程通道设计 3.1 模拟量输出通道 3.1.1单模拟量输出通道的构成 计算机控制系统的模拟量输出通道将计算机产生的数字控制信号转换为模拟信号&#xff08;电压或电流&#xff09;作用于执行机构&#xff0c;以实现对被控对象的控制。 多D/A结构&#…

python生成、操作svg图片

生成svg图片 通过python生成svg图片的方法有许多&#xff0c;比如OpenCV的源码中有svgfig.py这个脚本可以用于生成svg图片(OpenCV的棋盘格图片可以通过这个方法生成)&#xff0c;也可以使用svg.py的库&#xff0c;安装方法如下 pip install svg.py 下面是通过这个库生成一个简…

2024年大型语言模型(LLMs)的发展回顾

2024年对大型语言模型&#xff08;LLMs&#xff09;来说是充满变革的一年。以下是对过去一年中LLMs领域的关键进展和主题的总结。 GPT-4的壁垒被打破 去年&#xff0c;我们还在讨论如何构建超越GPT-4的模型。如今&#xff0c;已有18个组织拥有在Chatbot Arena排行榜上超越原…

Servlet解析

概念 Servlet是运行在服务端的小程序&#xff08;Server Applet)&#xff0c;可以处理客户端的请求并返回响应&#xff0c;主要用于构建动态的Web应用&#xff0c;是SpringMVC的基础。 生命周期 加载和初始化 默认在客户端第一次请求加载到容器中&#xff0c;通过反射实例化…

图片验证码如何显示在 Apifox 的响应控制台中

当接口返回的响应数据结构非常复杂&#xff0c;充斥着嵌套的对象和数组&#xff0c;其中还可能包含着图片的 URL 时&#xff0c;如果要查找特定信息&#xff0c;你需要不断上下滚动 JSON 响应&#xff0c;试图找到所需的字段。这不仅让人恼火&#xff0c;还浪费了宝贵的时间。 …

设计模式 创建型 单例模式(Singleton Pattern)与 常见技术框架应用 解析

单例模式&#xff08;Singleton Pattern&#xff09;是一种创建型设计模式&#xff0c;旨在确保某个类在应用程序的生命周期内只有一个实例&#xff0c;并提供一个全局访问点来获取该实例。这种设计模式在需要控制资源访问、避免频繁创建和销毁对象的场景中尤为有用。 一、核心…

《Xsens动捕与人形机器人训练》讲座将于1月9日下午2:30在线上召开

《Xsens动捕与人形机器人训练》讲座将于1月9日下午2:30在线上召开&#xff0c;本次讲座中来自Xsens的人形机器人与动捕技术专家Jeffrey Muller与Dennis Kloppenburg不仅将就Xsens动作捕捉系统与人形机器人行为训练中的实际应用进行详细讲解&#xff0c;同时还会对目前大家所关注…

Flutter踩坑记-第三方SDK不兼容Gradle 8.0,需适配namespace

最近需要集成Flutter作为Module&#xff0c;Flutter依赖了第三方库&#xff0c;Gradle是8.0版本。 编译报错&#xff1a; 解决办法是在.android根目录下的build.gradle下新增一行代码&#xff1a; buildscript {ext.kotlin_version "1.8.22"repositories {google()…

Linux驱动开发学习准备(Linux内核源码添加到工程-Workspace)

Linux内核源码添加到VsCode工程 下载Linux-4.9.88源码&#xff1a; 没有处理同名文件的压缩包&#xff1a; https://pan.baidu.com/s/1yjIBXmxG9pwP0aOhW8VAVQ?pwde9cv 已把同名文件中以大写命名的文件加上_2后缀的压缩包&#xff1a; https://pan.baidu.com/s/1RIRRUllYFn2…

ImageNet 2.0?自动驾驶数据集迎来自动标注新时代

引言&#xff1a; 3DGS因其渲染速度快和高质量的新视角合成而备受关注。一些研究人员尝试将3DGS应用于驾驶场景的重建。然而&#xff0c;这些方法通常依赖于多种数据类型&#xff0c;如深度图、3D框和移动物体的轨迹。此外&#xff0c;合成图像缺乏标注也限制了其在下游任务中的…

朱姆沃尔特隐身战舰:从失败到威慑

前言 "朱姆沃尔特"号驱逐舰是美国海军雄心勃勃的项目&#xff0c;旨在重塑未来海战。它融合了隐身、自动化和强大火力&#xff0c;然而由于技术问题和预算超支&#xff0c;原计划建造32艘的目标被大幅缩减&#xff0c;最终只建造了三艘。该舰的设计特点包括“穿浪逆船…

电子电器框架 --- 电动汽车上的车载充电器(OBC)

我是穿拖鞋的汉子,魔都中坚持长期主义的汽车电子工程师。 老规矩,分享一段喜欢的文字,避免自己成为高知识低文化的工程师: 所谓鸡汤,要么蛊惑你认命,要么怂恿你拼命,但都是回避问题的根源,以现象替代逻辑,以情绪代替思考,把消极接受现实的懦弱,伪装成乐观面对不幸的…

【C语言的小角落】--- 深度理解取余/取模运算

Welcome to 9ilks Code World (๑•́ ₃ •̀๑) 个人主页: 9ilk (๑•́ ₃ •̀๑) 文章专栏&#xff1a; C语言的小角落 本篇博客我们来深度理解取余/取模&#xff0c;以及它们在不同语言中出现不同现象的原因。 &#x1f3e0; 关于取整 &#x1f3b5; 向0取整…

快速上手LangChain(三)构建检索增强生成(RAG)应用

文章目录 快速上手LangChain(三)构建检索增强生成(RAG)应用概述索引阿里嵌入模型 Embedding检索和生成RAG应用(demo:根据我的博客主页,分析一下我的技术栈)快速上手LangChain(三)构建检索增强生成(RAG)应用 langchain官方文档:https://python.langchain.ac.cn/do…

Spring源码分析之事件机制——观察者模式(二)

目录 获取监听器的入口方法 实际检索监听器的核心方法 监听器类型检查方法 监听器的注册过程 监听器的存储结构 过程总结 Spring源码分析之事件机制——观察者模式&#xff08;一&#xff09;-CSDN博客 Spring源码分析之事件机制——观察者模式&#xff08;二&#xff…

redux react-redux @reduxjs/toolkit

redux团队先后推出了redux、react-redux、reduxjs/toolkit&#xff0c;这三个库的api各有不同。本篇文章就来梳理一下当我们需要在项目中集成redux&#xff0c;从直接使用redux&#xff0c;到使用react-redux&#xff0c;再到react-redux和reduxjs/toolkit配合使用&#xff0c;…

OpenHarmony通过挂载镜像来修改镜像内容,RK3566鸿蒙开发板演示

在测试XTS时会遇到修改产品属性、SElinux权限、等一些内容&#xff0c;修改源码再编译很费时。今天为大家介绍一个便捷的方法&#xff0c;让OpenHarmony通过挂载镜像来修改镜像内容&#xff01;触觉智能Purple Pi OH鸿蒙开发板演示。搭载了瑞芯微RK3566四核处理器&#xff0c;树…

网安数学基础期末复习

目录 整除同余同余方程群和环 整除 a的显然因数/平凡因数1&#xff0c;a整除的传递性和组合性 若 a ∣ b , b ∣ a a|b,b|a a∣b,b∣a 则 a b a\pm b ab欧几里得带余除法 公因数和最大公因数在整除里的定义&#xff0c;最大公因数为1则两数互质&#xff0c;注意公因数有正…