Flash Attention V3使用

Flash Attention V3 概述

Flash Attention 是一种针对 Transformer 模型中注意力机制的优化实现,旨在提高计算效率和内存利用率。随着大模型的普及,Flash Attention V3 在 H100 GPU 上实现了显著的性能提升,相比于前一版本,V3 通过异步化计算、优化数据传输和引入低精度计算等技术,进一步加速了注意力计算。

Flash Attention 的基本原理

😊在传统的注意力机制中,输入的查询(Q)、键(K)和值(V)通过以下公式计算输出:

😊其中,α是缩放因子,d 是头维度。Flash Attention 的核心思想是通过减少内存读写次数和优化计算流程来加速这一过程。

Flash Attention V3 针对 NVIDIA H100 架构进行了优化,充分利用其新特性,如 Tensor Cores 和 TMA(Tensor Memory Architecture),实现更高效的并行计算。这些优化使得 Flash Attention V3 能够在最新硬件上发挥出色的性能。 

通过使用分块(tiling)技术,将输入数据分成小块进行处理,减少对 HBM 的读写操作。这种方法使得模型在计算时能够有效利用 GPU 的快速缓存(SRAM),从而加速整体运算速度。 

Flash Attention V3 的创新点

💫Flash Attention V3 在 V2 的基础上进行了多项改进:

  • 生产者-消费者异步化:将数据加载和计算过程分开,通过异步执行提升效率。
  • GEMM-softmax 流水线:将矩阵乘法(GEMM)与 softmax 操作结合,减少等待时间。
  • 低精度计算:引入 FP8 精度以提高性能,同时保持数值稳定性。

这些改进使 Flash Attention V3 在处理长序列时表现出色,并且在 H100 GPU 上达到了接近 1.2 PFLOPs/s 的性能。

  1. 安装 PyTorch:确保你的环境中安装了支持 CUDA 的 PyTorch 版本。
  2. 安装 Flash Attention
pip install flash-attn

检查 CUDA 版本:确保你的 CUDA 版本与 PyTorch 和 Flash Attention 兼容。

在 PyTorch 中实现一个简单的 Transformer 模型并利用 Flash Attention 加速训练过程

项目结构

flash_attention_example/
├── main.py
├── requirements.txt
└── model.py

model.py

import torch
from torch import nn
from flash_attn import flash_attn_qkvpacked_funcclass SimpleTransformer(nn.Module):def __init__(self, embed_size, heads):super(SimpleTransformer, self).__init__()self.embed_size = embed_sizeself.heads = headsself.values = nn.Linear(embed_size, embed_size, bias=False)self.keys = nn.Linear(embed_size, embed_size, bias=False)self.queries = nn.Linear(embed_size, embed_size, bias=False)self.fc_out = nn.Linear(embed_size, embed_size)def forward(self, x):N, seq_length, _ = x.shapevalues = self.values(x)keys = self.keys(x)queries = self.queries(x)# 使用 Flash Attention 进行注意力计算attention_output = flash_attn_qkvpacked_func(queries, keys, values)return self.fc_out(attention_output)def create_model(embed_size=256, heads=8):return SimpleTransformer(embed_size=embed_size, heads=heads).cuda()

main.py

import torch
from transformers import AutoTokenizer
from model import create_modeldef main():# 设置设备为 CUDAdevice = 'cuda' if torch.cuda.is_available() else 'cpu'# 加载模型和 tokenizermodel = create_model().to(device)tokenizer = AutoTokenizer.from_pretrained("meta-llama/llama-2-7b-chat-hf/")# 输入文本并进行编码input_text = "Hello, how are you?"inputs = tokenizer(input_text, return_tensors="pt").to(device)# 前向传播with torch.no_grad():output = model(inputs['input_ids'])print("Model output:", output)if __name__ == "__main__":main()
  1. 模型定义:在 model.py 中,我们定义了一个简单的 Transformer 模型,包含线性层用于生成查询、键和值。注意力计算使用 flash_attn_qkvpacked_func 函数实现。
  2. 主程序:在 main.py 中,我们加载预训练模型的 tokenizer,并对输入文本进行编码。然后,将编码后的输入传入模型进行前向传播,并输出结果。
python main.py

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/501249.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

《Vue3实战教程》34:Vue3状态管理

如果您有疑问&#xff0c;请观看视频教程《Vue3实战教程》 状态管理​ 什么是状态管理&#xff1f;​ 理论上来说&#xff0c;每一个 Vue 组件实例都已经在“管理”它自己的响应式状态了。我们以一个简单的计数器组件为例&#xff1a; vue <script setup> import { r…

电脑找不到mfc110.dll文件要如何解决?Windows缺失mfc110.dll文件快速解决方法

一、mfc110.dll文件的重要性 mfc110.dll&#xff0c;全称Microsoft Foundation Class Library 110&#xff0c;是Microsoft Visual C Redistributable for Visual Studio 2012的一部分。这个动态链接库&#xff08;DLL&#xff09;文件对于支持基于MFC&#xff08;Microsoft F…

OSPF特殊区域(open shortest path first LSA Type7)

一、区域介绍 1、Stub区域 Stub区域是一种可选的配置属性。通常来说&#xff0c;Stub区域位于自治系统的边界&#xff0c;例如&#xff0c;只有一 个ABR的非骨干区域。在这些区域中&#xff0c;设备的路由表规模以及路由信息传递的数量都会大量减少。 kill 4 5类type 传递1 …

浏览器选中文字样式

效果 学习 Chrome: 支持 ::selection。Firefox: 支持 :-moz-selection 和 ::selection。Safari: 支持 ::selection。Internet Explorer: 支持 :-ms-selection。Microsoft Edge: 支持 ::-ms-selection 和 ::selection。 代码 <!DOCTYPE html> <html lang"en&qu…

Rabbitmq追问1

如果消费端代码异常&#xff0c;未手动确认&#xff0c;那么这个消息去哪里 2024-12-31 21:19:12 如果消费端代码发生异常&#xff0c;未手动确认&#xff08;ACK&#xff09;的情况下&#xff0c;消息的处理行为取决于消息队列的实现和配置&#xff0c;以下是基于 RabbitMQ …

Ansys Discovery 中的网格划分方法:探索模式

本篇博客文章将介绍 Ansys Discovery 中可用于在探索模式下进行分析的网格划分方法。我们将在下一篇博客中介绍 Refine 模式下的网格划分技术。 了解 Discovery Explore 模式下的网格划分 网格划分是将几何模型划分为小单元以模拟系统在不同条件下的行为的过程。这是通过创建…

Golang的并发编程实战经验

## Golang的并发编程实战经验 并发编程是什么 并发编程是指程序的多个部分可以同时执行&#xff0c;这样可以提高程序的性能和效率。在Golang中&#xff0c;并发编程是通过goroutine来实现的&#xff0c;goroutine是一种轻量级线程&#xff0c;可以在一个程序中同时运行成千上万…

vue2实现excel文件预览

一、插件 通过xlsx插件解析excel数据&#xff0c;对解析后的html组件进行渲染展示。 npm install xlsx 二、完整代码 <template><!-- excel文件预览 --><divelement-loading-text"拼命加载中"element-loading-spinner"el-icon-loading"…

低代码引擎插件开发:开启开发的便捷与创新之路

OneCode授权演示 一、低代码引擎与插件开发的概述 在当今快节奏的软件开发领域&#xff0c;低代码引擎正逐渐崭露头角。低代码引擎旨在让开发人员能够以最少的代码量创建功能丰富的应用程序&#xff0c;而其中的关键组成部分便是插件开发。低代码引擎通过提供可视化的开发环境…

Golang的代码质量分析工具

Golang的代码质量分析工具 一、介绍 作为一种高效、简洁、可靠的编程语言&#xff0c;被越来越多的开发者所喜爱和采用。而随着项目规模的增长和团队人员的扩大&#xff0c;代码质量的管理变得尤为重要。为了保障代码的可维护性、健壮性和可扩展性&#xff0c;我们需要借助代码…

JVM实战—9.线上FGC的几种案例

大纲 1.如何优化每秒十万QPS的社交APP的JVM性能(增加S区大小 优化内存碎片) 2.如何对垂直电商APP后台系统的FGC进行深度优化(定制JVM参数模版) 3.不合理设置JVM参数可能导致频繁FGC(优化反射的软引用被每次YGC回收) 4.线上系统每天数十次FGC导致频繁卡顿的优化(大对象问题…

蓝耘平台使用InstantMesh‌生成高质量的三维网格模型!3D内容创作!小白入门必看!!!

目录 引言 InstantMesh应用介绍 蓝耘平台与InstantMesh结合使用 如何部署&#xff08;超简单&#xff09; 第一步登录蓝耘平台 第二步点击应用商城 ​编辑 第三步选择InstantMesh 第四步点击部署 第五步点击快速启动应用 第六步即可体验该产品 总结 注册链接 引言…

LeetCode:106.从中序与后序遍历序列构造二叉树

跟着carl学算法&#xff0c;本系列博客仅做个人记录&#xff0c;建议大家都去看carl本人的博客&#xff0c;写的真的很好的&#xff01; 代码随想录 LeetCode&#xff1a;106.从中序与后序遍历序列构造二叉树 给定两个整数数组 inorder 和 postorder &#xff0c;其中 inorder …

aardio —— 虚表 —— 模拟属性框

写了个简单的属性框例程&#xff0c;抛砖引玉&#xff0c;期待你做出更丰富强大的功能。 可折叠行、可输入文本、可下拉选择、支持下拉选择图片、颜色等功能。 只有想不到&#xff0c;没有做不到&#xff0c;发挥你的想象力吧。 import win.ui; import godking.comboboxEx im…

word文档中的文档网格——解决相同行间距当显示出不同行间距的情况

1 问题 被一个行间距调疯了&#xff0c;就是样式改了没用&#xff0c;格式刷刷了没用。就是肉眼可以看出行间距完全不一样。 2 解决方法 1&#xff09;修改论文正文(即出现问题文本的样式)样式&#xff1a;样式>修改>格式>段落>缩进和间距>取消"如果定义了…

CDP集群安全指南-静态数据加密

[一]静态数据加密的架构 CDP 支持两种加密组件&#xff0c;这些组件可以组合成独特的解决方案。在选择密钥管理系统&#xff08;KMS&#xff09;时&#xff0c;您需要决定哪些组件能够满足企业的密钥管理和加密需求。 CDP 加密组件 以下是 Cloudera 用于静态数据加密的组件描…

ACM算法模板

ACM算法模板 起手式基础算法前缀和与差分二分查找三分查找求极值分治法&#xff1a;归并排序 动态规划基本线性 d p dp dp最长上升子序列I O ( n 2 ) O(n ^ 2) O(n2)最长上升子序列II O ( n l o g n ) O(nlogn) O(nlogn) 贪心二分最长公共子序列 背包背包求组合种类背包求排列…

AcWing练习题:差

读取四个整数 A,B,C,D&#xff0c;并计算 (AB−CD)的值。 输入格式 输入共四行&#xff0c;第一行包含整数 A&#xff0c;第二行包含整数 B&#xff0c;第三行包含整数 C&#xff0c;第四行包含整数 D。 输出格式 输出格式为 DIFERENCA X&#xff0c;其中 X 为 (AB−CD) 的…

前端路由 Hash 和 History 模式原理对比区别

前端路由 Hash 和 History 模式原理对比区别 1. 基本概念 1.1 什么是前端路由 前端路由是指在单页应用&#xff08;SPA&#xff09;中&#xff0c;通过 JavaScript 来实现页面的切换和状态管理&#xff0c;而无需向服务器请求新的页面。主要有两种实现方式&#xff1a;Hash …

头歌实训数据结构与算法 - 字符串匹配(第2关:实现KMP字符串匹配)

任务描述 本关任务&#xff1a;编写一个程序&#xff0c;利用kmp算法求子串在主串中不重叠出现的次数。 实验目的&#xff1a;深入掌握KMP算法的应用。实验内容&#xff1a;编写一个程序&#xff0c;利用KMP算法求子串t在主串s中出现的次数&#xff0c;例如&#xff1a;s“aa…