一文大白话讲清楚TCP连接的三次握手和断开连接的四次挥手的原理

文章目录

  • 一文大白话讲清楚TCP连接的三次握手和断开连接的四次挥手的原理
  • 1.TCP建立连接需要3次握手
    • 1.1 先讲个你兄弟的故事
    • 1.2 TCP 3次握手
    • 1.2 TCP 3次握手8件事
    • 1.3 TCP握手能不能是两次
  • 2. TCP 断开连接要4次挥手
    • 2.1 还回到你兄弟的故事上
    • 2.2 TCP 4次挥手
    • 2.2 TCP4次挥手4件事
    • 2.3 TIME_WAIT的作用是啥,为什么不能直接进入CLOSED状态
    • 2.4 为什么TIME_WAIT要过2MSL才能进入CLOSEd状态
    • 2.5 tcp连接管理中的保活机制

一文大白话讲清楚TCP连接的三次握手和断开连接的四次挥手的原理

  • TCP是面向连接的协议,在传输前必须要知道接收方存在还是不存在,所以在传输数据前后要经过3次握手和4次挥手

1.TCP建立连接需要3次握手

1.1 先讲个你兄弟的故事

  • 先来个场景大白话讲一下
  • 你有一块些黄金,要卖给你的好兄弟,然后你的好兄弟收到黄金后把现金寄给你。但因为太贵重了,你们不知道对方在不在家,能不能收到
  • 所以在寄快递前,你两确认了一下
  • 第一步,你给你的好兄弟先接了一封信,问问他在不在家(这时候信寄出去以后,你处于等对方的回信)
  • 第二步,你的好兄弟给你回了一封信,告诉你他在家,但这个时候他不知道你已经知道他在家(他把信寄给你了,你处于等待回信的状态)
  • 第三步,所以你又给你的好兄弟协议了一封信,告诉他,我收到你的信了,我知道你在家了,你准备好接收。(这时候你知道他在家了,他也知道你知道他在家了)
  • 第四步,那既然都知道,就寄黄金呗。
  • 这样一来一回,你们一共发了三封信,目的就是为了明确对方在不在,要干啥。这就是TCP的两个主机之间的三次握手。只不过你是寄黄金,TCP是发数据

1.2 TCP 3次握手

  • 讲了上面的故事,相信大家应该明白了,接下来讲细节,就是我怎么寄的信,信里面有什么,你怎么回的信,信里面有什么
  1. 第一次握手,客户端给服务端发一个SYN(Synchronize Sequence Numbers:同步序列编号),并指明客户端的初始序列号ISN(Initial Sequence Number:初始序列号),此时客户端处于SYN_SENT状态
  2. 第二握手:服务器收到客户端的SYN报文后,会将自己的SYN报文发送给客户端,同时为了确认客户端的SYN,将客户端的ISN+1作为ACK(Acknowledgment character:确认字符)的值发送给客户端,此时服务端处于SYN_RCVD状态
  3. 客户端收到服务端的SYN报文后,会发送一个ACK报文,ACK的值为服务器的ISN+1.此时客户端处于ESTABLISHED状态。服务端收到ACK报文之后,也处于ESTABLISHED状态。此时,双方建立了链接
  • 上图

在这里插入图片描述

1.2 TCP 3次握手8件事

  • 说白了,如果要进行通讯,服务端要知道:自己和客户端的发送和接收能力正常;客户端要知道自己和服务端的发送和接收能力正常
  • 也就是要确定下列几件事
  1. 客户端知道自己发送能力正常
  2. 客户端知道自己接受能力正常
  3. 客户端知道服务器发送能力正常
  4. 客户端知道服务器接收能力正常
  5. 服务器知道自己发送能力正常
  6. 服务器知道自己接受能力正常
  7. 服务器知道客户端发送能力正常
  8. 服务器知道客户端接接收能力正常
  • 也就是说,通过三次握手,我们要确定这8件事
  • 那么接下来看看每次握手的作用和完成的事情
  • 一. 第一次握手,客户端发送数据包,服务端收到了;
    • 得到的结论:服务端知道客户端的发送能力正常,即7完成,服务端知道自己的接收能力正常,即6完成(67)
  • 二. 第二次握手,服务端发送数据包,客户端收到了
    • 得到的结论:在第一次握手结论的基础上,客户端知道服务端的发送能力正常,即3完成,客户端知道服务端的接收能力正常,即4完成,客户端知道客户端的接收能力正常,即2完成;客户端知道自己的发送能力正常,即1完成(123467)
  • 三. 第三次握手,客户端发送网络数据包,服务端收到了
    • 得到的结论:在第二次结论的基础上,服务端知道自己的发送能力正常,即5完成,服务端知道客户端的接收能力正常,即8完成(12345678)
      通过3次握手,确定了8件事,即确定了双方的发送和接受能力,而且确定了对方知道彼此的接收和发送能力正常;
  • 那就可以开始传输数据了

1.3 TCP握手能不能是两次

  • 通过上面的8件事我们知道,如果少一次握手,哪个第五件事和第8件事,也就是服务端无法确定客户端的接受能力正常,服务端也无法确定自己的发送能力正常。那就有可能, 服务端认为自己发了,但是客户端收不到。

2. TCP 断开连接要4次挥手

2.1 还回到你兄弟的故事上

  • 通过上面TCP连接后,你两现在一个可以把黄金一批批的寄过去了,另一个可以一批一批地把现金寄过来了。但问题是,你这边黄金总有寄完的时候吧。如果寄完了,你是不是得告诉你兄弟一声,让他知道,然后他也把剩下的钱寄给你。寄给你以后,你两两清了,就不用再来回邮寄了。
  • 那这时候咱们分析一下
  • 第一步,你这边黄金发完了,没得发了。所以你给你兄弟写了一封信,好兄弟,以后没黄金了,咱两可以不用再联系了。
  • 第二步,你兄弟收到你的来信了,知道你没黄金了,以后也不寄了,但是还差最后一批黄金的钱没给你。于是你兄弟干了两件事。先是给你回了一封信,好的兄弟我知道了。但是还有一笔没给你结,稍后我给你寄过来。如果你收到这边钱了,给我说一声。咱两就断联。于是第一件事,信寄出去了。接着第二件事,把钱寄出去
  • 第三步,你收到你兄弟最后一笔寄来的钱了,给他写信说,好兄弟我收到钱了,咱们断联。
  • 这时,如果你兄弟收到钱了,就知道你两车企两清了,不用来回邮寄了。
  • 这样一来一回,你发两封信,你兄弟发两封信,一共4封信,目的就是清算,挥手告别。所以这就是TCP的4次挥手断连

2.2 TCP 4次挥手

  • 讲了上面的故事,接下来讲细节,看看写信的时候都具体说了啥
  1. 第一次挥手:客户端发送一个FIN报文,报文中指定一个序列号。此时客户端处于FIN_WAIT1状态,就是停止发送,等待服务端确认
  2. 第二次挥手,服务端收到FIN报文后,会发送ACK报文,且把客户端的序列号+1作为ACK报文的序列号,表明已经收到客户端的报文了,此时服务端处于CLOSE_WAIT状态
  3. 第三次挥手:如果服务端发送完数据了,也会发给客户端一个FIN报文,且制定一个序列号,此时服务端处于LAST_ACK状态
  4. 第四次挥手,客户端收到FIN之后,一样发送一个ACK报文,并把服务端的序列号+1作为序列号,此时客户端处于TIME_WAIT状态、需要过一整子,确保服务端收到自己的ACK报文后才会进入CLOSED状态,服务端收到ACK报文后,就处于关闭连接,进入CLOSEd状态
  • 上图
    在这里插入图片描述

2.2 TCP4次挥手4件事

  • 说白了,告别就是在数据发完的前提下,互相知道不再发送,所以需要干完这4件事
  1. 客户端知道自己不再发送请求了
  2. 客户端知道服务器不再发送数据了
  3. 服务端知道客户端不再发送请求了
  4. 服务端知道自己不再发送数据了
  • 那么接下来看4次挥手怎么完成的这些事
  • 一,第一次挥手,客户端告诉服务器,我不在发送请求了
    • 得出结论:客户端知道自己不再发送请求了,即1完成;服务端知道客户端不再发送请求了,即3完成(13)
  • 二,第二次挥手,服务器告诉客户端,我知道你不再发送请求了,但是我可能还有数据要,等我也不发了,我再另外给你通知
    • 得出结论,客户端知道服务端知道客户端不再发送请求了
  • 三,第三次挥手,服务器告诉客户端,我不再发送数据了
    • 得出结论,客户端知道服务端不再发送数据了,即2完成;服务端知道自己不再发送数据了,即4完成(1234)
  • 四,第四次挥手,客户端告诉服务端,我收到你不再发送消息的通知了,我等你差不多收到消息(2MSL后)我就关闭了
    • 得出结论,大家都可以关闭了
  • OK,咱们断连,不再发送数据了

2.3 TIME_WAIT的作用是啥,为什么不能直接进入CLOSED状态

  • 如果没有TIME_WAIT,状态,则服务器的FIN包没有得到最后的ack确认,超时后会重传。这样会下次的新链接产生影响,可能会刚打开就收到一个重传的包,或者客户端相同的服务端发送SKY连接请求但服务器处于LAST_ACK状态,要求收到的是ack而不是SYN,因此会发送RST重新建立请求

2.4 为什么TIME_WAIT要过2MSL才能进入CLOSEd状态

  • 首先MSL是指网络中最大生存时间。
  • 为什么要等2MSL,是因为客户端发送了对服务端的FIN确认包ASK后,不能确保ACK被接收到。如果接收不到,服务器端如果接收不到ACK包就会重新发送FIN包,所以客户端发送后等2MSL的时间,如果这个时间内没有收到重新的FIN包,说明收到了,那可以关闭了。

2.5 tcp连接管理中的保活机制

  • TCP通信中,如果双方长时间没有数据往来,服务器会周期性向客户端发送探测数据报,要求客户端回复,如果连续多次没有收到响应,救人位连接已经断开。
  • 周期为75s,如果连续超过9次,则认为断开
  • 长时间未发送数据值得是超过7200s

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/502101.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

基于springboot的课程作业管理系统(源码+数据库+文档)

亲测完美运行带论文:文末获取源码 文章目录 项目简介(论文摘要)运行视频包含的文件列表(含论文)前端运行截图后端运行截图 项目简介(论文摘要) 随着科学技术的飞速发展,社会的方方面…

【ArcGIS微课1000例】0136:制作千层饼(DEM、影像、等高线、山体阴影图层)

文章目录 一、效果展示二、数据准备三、制作过程1. 打开软件2. 制作DEM图层3. 制作影像层4. 制作TIN层5. 制作等高线层四、注意事项一、效果展示 二、数据准备 订阅专栏后,从专栏配套案例数据包中的0136.rar中获取。 1. dem 2. 影像 3. 等高线 4. tin 三、制作过程 1. 打开软…

蓝桥杯备赛:C++基础,顺序表和vector(STL)

目录 一.C基础 1.第一个C程序: 2.头文件: 3.cin和cout初识: 4.命名空间: 二.顺序表和vector(STL) 1.顺序表的基本操作: 2.封装静态顺序表: 3.动态顺序表--vector:…

探索AI在地质科研绘图中的应用:ChatGPT与Midjourney绘图流程与效果对比

文章目录 个人感受一、AI绘图流程1.1 Midjourney(1)环境配置(2)生成prompt(3)完善prompt(4)开始绘图(5)后处理 1.2 ChatGPT不合理的出图结果解决方案 二、主题…

融合表面信息和等变扩散的分子对接模型 SurfDock - 评测

SurfDock 是一个几何扩散模型,蛋白质序列、三维结构图、以及表面结构等结构特征,采用的是非欧里几何的范式处理小分子的旋转、平移以及扭转。 SurfaceDock 以蛋白口袋作为条件,从 rdkit 生成的随机小分子构象开始,对平移、旋转、扭…

CSS——2.书写格式一

<!DOCTYPE html> <html><head><meta charset"UTF-8"><title></title></head><body><!--css书写中&#xff1a;--><!--1.css 由属性名:属性值构成--><!--style"color: red;font-size: 20px;&quo…

R机器学习:神经网络算法的理解与实操,实例解析

神经网络算法是一种模仿生物神经网络&#xff08;尤其是人脑&#xff09;结构和功能的算法。它由大量相互连接的节点&#xff08;称为神经元&#xff09;组成&#xff0c;这些神经元组织成层&#xff0c;通过传递信号来处理信息。神经网络算法在机器学习、人工智能等领域中扮演…

【C++】B2092 开关灯

博客主页&#xff1a; [小ᶻ☡꙳ᵃⁱᵍᶜ꙳] 本文专栏: C 文章目录 &#x1f4af;前言&#x1f4af;题目描述和解析题目描述输入格式输出格式解析 &#x1f4af;实现代码对比&#xff1a;我的做法和老师的做法我的代码实现代码分析优点问题 老师的代码实现代码分析 &#x…

【PS不常见教程】实操篇之通道抠图-抠黑色背景的图片

观前小提示&#xff1a;本文内容为我原创成果&#xff0c;若您需要转载或引用其中图片或文字内容&#xff0c;请记得标注来源是“璞子的家”哦&#xff0c;感谢您的尊重&#xff0c;理解与支持&#xff0c;谢谢啦&#xff01; 如果没看过之前的文章&#xff0c;可以先看之前的两…

STM32完全学习——使用定时器1精确延时

一、定时器的相关配置 首先一定要是递减定时器&#xff0c;递增的不太行&#xff0c;控制的不够准确&#xff0c;其次在大于10微秒的延时是非常准确的&#xff0c;小于的话&#xff0c;就没有那没准&#xff0c;但是凑合能用。误差都在一个微秒以内。使用高级定时器也就是时钟…

【Cesium】三、实现开场动画效果

文章目录 实现效果实现方法实现代码组件化 实现效果 实现方法 Cesium官方提供了Camera的flyTo方法实现了飞向目的地的动画效果。 官方API&#xff1a;传送门 这里只需要用到目的地&#xff08;destination&#xff09;和持续时间&#xff08;duration&#xff09;这两个参数…

【游戏设计原理】47 - 超游戏思维

对于这条原理&#xff0c;我首先想到的是开放世界&#xff0c;或者探索性游戏&#xff0c;这是最能包容各类玩家的游戏类型。这类游戏定义了基本规则&#xff0c;玩家的可操作性很强。就像上图里的沙池一样&#xff0c;里面有滑梯&#xff0c;是规则性比较明确的&#xff0c;而…

DeepSeek v3为何爆火?如何用其集成Milvus搭建RAG?

最近&#xff0c;DeepSeek v3&#xff08;一个MoE模型&#xff0c;拥有671B参数&#xff0c;其中37B参数被激活&#xff09;模型全球爆火。 作为一款能与Claude 3.5 Sonnet&#xff0c;GPT-4o等模型匹敌的开源模型DeepSeek v3不仅将其算法开源&#xff0c;还放出一份扎实的技术…

Kbuild学习知识点

1.Kbuild本质&#xff1a;一个可扩展、可配置的Makefile框架&#xff0c;递归式Makefile&#xff0c;菜单式配置。 2.Kbuild构成&#xff1a; Makefile:顶层目录下的Makefile.config:内核的配置文件arch/S(ARCH)/Makefile:跟平台架构相关的Makefilescripts/Makefile.*:通用编…

C++和OpenGL实现3D游戏编程【连载19】——着色器光照初步(平行光和光照贴图)(附源码)

1、本节要实现的内容 我们在前期的教程中,讨论了在即时渲染模式下的光照内容。但在我们后期使用着色器的核心模式下,会经常在着色器中使光照,我们这里就讨论一下着色器光照效果,以及光照贴图效果,同时这里知识会为后期的更多光照效果做一些铺垫。本节我们首先讨论冯氏光照…

后端java开发路由接口并部署服务器(四)

一、安装IntelliJ IDEA&#xff0c;安装包下载 1、官网下载 2、网盘资源 安装包下载完成后进行傻瓜式下一步安装就可以了 打开IntelliJ IDEA&#xff0c;输入网盘资源文件内容 三、汉化处理 插件搜索chinese&#xff0c;就会找到相应的插件安装重启软件即可 四、新建后端j…

一文理解ssh,ssl协议以及应用

在使用基于密钥的认证方式的时候&#xff0c;私钥的位置一定要符合远程服务器规定的位置&#xff0c;否则找不到私钥的位置会导致建立ssh连接失败 SSH 全称是 “Secure Shell”&#xff0c;即安全外壳协议。 它是一种网络协议&#xff0c;用于在不安全的网络中安全地进行远程登…

通往O1开源之路

“Scaling of Search and Learning: A Roadmap to Reproduce o1 from Reinforcement Learning Perspective”由复旦大学和上海人工智能实验室的研究者撰写。该论文从强化学习视角出发&#xff0c;深入分析了实现类似OpenAI o1模型性能的路线图&#xff0c;聚焦于策略初始化、奖…

FPGA、STM32、ESP32、RP2040等5大板卡,结合AI,更突出模拟+数字+控制+算法

板卡选择困难症了&#xff1f;如果你也想玩FPGA、STM32、ESP32、RP2040相关的板卡&#xff0c;不如看看以下几款板卡&#xff0c;如果正巧碰上能实现你想要做的项目呢~ 01 小脚丫FPGA STEP BaseBoard V4.0套件 STEP BaseBoard V4.0是第4代小脚丫FPGA扩展底板&#xff08;点击了…

python进阶06:MySQL

课后大总结 Day1 一、数据库命令总结 1.连接数据库 连接数据库进入mysql安装目录打开bin文件夹&#xff0c;输入cmd(此命令后无分号)mysql.exe -u root -ppassword命令后输入密码:root 设置密码set passwordpassword("root123"); 查看所有数据库show databases; …