开放词汇检测新晋SOTA:地瓜机器人开源DOSOD实时检测算法

在计算机视觉领域,目标检测是一项关键技术,旨在识别图像或视频中感兴趣物体的位置与类别。传统的闭集检测长期占据主导地位,但近年来,开放词汇检测(Open-Vocabulary Object Detection-OVOD 或者 Open-Set Object Detection-OSOD)崭露头角,为目标检测带来了新的活力与可能性。与闭集检测相比,开放词汇检测打破了检测类别固定的“枷锁”,它在训练时利用丰富多样的文本 - 区域对(text-region pairs)数据,将文本作为类别标签,大大拓宽了可检测的范围。尤其是在机器人感受周围环境的任务中,能够起到极大的帮助。

目前主流的开放词汇检测算法有Grounding-DINO系列和YOLO-World。在海量的私有数据集的加持下,前者具有非常强大的检测能力,精度遥遥领先,其模型依赖参数量较大的Transformer结构,实时性较弱。后者依赖轻量级的Convolution结构,能够达到实时推理的效率,精度上依然不错。

DOSOD(Decoupled Open-Set Object Detection)是地瓜机器人最新发布的开放词汇目标检测算法,力求在低算力边缘端实现更高的推理效率,同时带来比YOLO-World更具竞争力的精度表现。在算法上,DOSOD采用了独特的解耦特征对齐策略,摒弃了传统的图像-文本交互方式,通过基于MLPs的特征适配模块对图像与文本的特征进行优化与对齐,进一步提升了模型的推理效率和精度。

实验结果显示,DOSOD在多个公开数据集(如LVIS)上的表现超越了YOLO-World-v2,并在边缘AI计算平台上展现了压倒性的效率优势。

图片

图片

文章开源地址:https://arxiv.org/abs/2412.14680
代码开源地址:https://github.com/D-Robotics-AI-Lab/DOSOD
文章由地瓜机器人应用算法部,中科院自动化所多模态人工智能系统全国重点实验室,苏州大学未来学院,上海科技大学信息科学技术学院联合出品。

DOSOD的基本原理

图片

目前主流的开放词汇检测对齐策略主要分为以下三种:

(a) 教师 - 学生蒸馏方法

  • 描述:利用 VLM(视觉语言模型)的文本编码器生成的文本嵌入来监督图像特征和检测器特征的对齐。也可以通过裁剪图像区域来对齐特征。

  • 总结:通过 VLM 的文本编码器来指导图像和检测器特征的对齐。

(b) 基于交互的对齐策略

  • 描述:文本嵌入与检测器骨干网络提取的图像特征进行交互,以实现对齐。

  • 总结:通过文本嵌入与图像特征的交互来实现特征对齐。

(c) 提出的解耦对齐策略

  • 描述:在不进行交互的情况下对齐特征,通过视觉 - 语言特征适配来实现。

  • 总结:采用解耦方式,不依赖交互来进行特征对齐。

DOSOD(Decoupled Open-Set Object Detection) 属于第三种开放词汇检测对齐策略——解耦对齐策略。该方法的核心思想是通过将文本和图像模态的特征解耦,以实现更高效的对齐过程,从而在保证检测精度的同时大幅提升推理速度。

图片

在此基础上,DOSOD洞察到了闭集检测开放词汇检测之间的本质联系,提出了全新的结构框架(如上图所示)。具体来说,DOSOD将传统分类分支最后的卷积操作等价地解构为两个模态的特征对齐操作,从而激发出解耦的特征学习和共同空间对齐的结构。

在该框架中,类别标签文本首先通过一个文本编码器(来自VLM)生成初步的Text Embedding,然后经过一个基于MLPs的特征适应模块,对Text Embedding进行特征优化,为Joint Space中的对齐操作做准备。

在图像侧,DOSOD使用经典的单阶段目标检测器(文中使用了YOLOv8)来提取图像的多尺度特征图。每个特征点表示图像中的一个区域特征。最后,在Joint Space中,通过计算Text Embedding与Region Feature之间的相似度,从而完成特征对齐。

DOSOD的实验结果

在实验部分,DOSOD在公开数据集上进行了预训练,并在LVISCOCO数据集上进行了Zero-shot验证。DOSOD均拥有优秀的精度表现:

  • 在LVIS数据集上,相较于YOLO-World-v2,DOSOD精度全面领先,并与YOLO-World-v1不分伯仲。

图片

  • 在COCO数据集上,DOSOD整体精度要略低于YOLO-World,但YOLO-World-v2的精度微高于YOLO-World-v1,也一定程度上说明,COCO由于词汇丰富程度较低,不太适用于开放词汇检测任务评测。

图片

在推理速度上,通过将DOSODYOLO-WorldNVIDIA RTX 4090D-Robotics RDK X5上进行全面对比,我们可以看到:

  • DOSOD在主流的服务器级别的芯片上,推理效率是显著高于YOLO-World

图片

  • 在边缘侧的AI计算平台上,DOSOD以碾压式的效率提升,远远超越YOLO-World

图片

DOSOD的应用效果

DOSOD开放词汇检测算法有着广泛的应用场景,既能用于常规检测任务里的目标检测,也可以应用在特殊场景下长尾目标类型的检测任务当中。针对某些极端长尾的目标类型,只需收集少量相关数据进行微调,就能显著提高模型的稳定性和检测效果。

  • DOSOD 在常规目标检测上的检测效果

在闭集目标检测任务中,COCO数据集预先定义了80个固定类别。我们可以看到,在经过大数据量的开放词汇数据集预训练后,DOSOD能够检测出诸多长尾类别,如图2左下角的“heater”,图4中的“shoe”和“wheel”,而这些词汇并未包含在COCO数据集的80个类别之内。

图片

  • DOSOD 在特殊场景的长尾类别上的检测效果

以下展示的是扫地机视角下的图像,任务要求是检测出地面上的各类污渍或障碍物,这些类别并不是常规目标检测任务中的标准类别。通过少量数据的微调,DOSOD成功识别了这些特殊类别,为在该场景中准确检测出多样化的长尾类别发挥了关键作用。

图片

图片

图片

图片

DOSOD作为一款新兴的开放词汇检测算法,凭借创新的解耦特征对齐策略,在提升推理效率的同时,成功地保证了精度,展示出了极强的应用潜力。未来,随着计算资源的提升与算法的不断优化,DOSOD有望在机器人、自动驾驶、智能家居等领域提供更加高效精准的目标检测解决方案。

作为地瓜机器人前沿算法研究的最新成果,DOSOD不仅在精度上超越了对标方法,更成功解决了推理效率与低算力设备适应性之间的挑战,为智能机器人技术的普及与发展提供了有力支持。

未来,地瓜机器人将秉承“成为机器人时代的Wintel”的品牌初心,持续与客户一同深入应用场景,在提供拥有极致性能表现的硬件的同时,为行业客户和开发者提供丰富的具有实用价值的算法,加速机器人技术的落地和广泛应用。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/504338.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【Ubuntu】 Ubuntu22.04搭建NFS服务

安装NFS服务端 sudo apt install nfs-kernel-server 安装NFS客户端 sudo apt install nfs-common 配置/etc/exports sudo vim /etc/exports 第一个字段:/home/lm/code/nfswork共享的目录 第二个字段:指定哪些用户可以访问 ​ * 表示所有用户都可以访…

第四、五章补充:线代本质合集(B站:小崔说数)

视频1:线性空间 原视频:【线性代数的本质】向量空间、基向量的几何解释_哔哩哔哩_bilibili 很多同学在学习线性代数的时候,会遇到一个困扰,就是不知道什么是线性空间。因为中文的教材往往对线性空间的定义是非常偏数学的&#x…

JS进阶--JS听到了不灭的回响

作用域 作用域(scope)规定了变量能够被访问的“范围”,离开了这个“范围”变量便不能被访问 作用域分为局部和全局 局部作用域 局部作用域分为函数和块 那 什么是块作用域呢? 在 JavaScript 中使用 { } 包裹的代码称为代码块…

MFC读写文件实例

程序功能:点击写入文件按钮将输入编辑框中内容写入以系统时间命名的文件中,点击读取文件按钮将选中的文件内容显示到静态文本控件中。 相关代码如下: void CWR_FILEDlg::OnButton1() {CString str;GetDlgItem(IDC_EDIT1)->GetWindowText…

IWOA-GRU和GRU时间序列预测(改进的鲸鱼算法优化门控循环单元)

时序预测 | MATLAB实现IWOA-GRU和GRU时间序列预测(改进的鲸鱼算法优化门控循环单元) 目录 时序预测 | MATLAB实现IWOA-GRU和GRU时间序列预测(改进的鲸鱼算法优化门控循环单元)预测效果基本介绍模型描述程序设计参考资料 预测效果 基本介绍 MATLAB实现IWOA-GRU和GRU时间序列预测…

详细全面讲解C++中重载、隐藏、覆盖的区别

文章目录 总结1、重载示例代码特点1. 模板函数和非模板函数重载2. 重载示例与调用规则示例代码调用规则解释3. 特殊情况与注意事项二义性问题 函数特化与重载的交互 2. 函数隐藏(Function Hiding)概念示例代码特点 3. 函数覆盖(重写&#xff…

DAY15 神经网络的参数和变量

DAY15 神经网络的参数和变量 一、参数和变量 在神经网络中,参数和变量是两个关键概念,它们分别指代不同类型的数据和设置。 参数(Parameters) 定义:参数是指在训练过程中学习到的模型内部变量,这些变量…

git的rebase和merge的区别?

B分支从A分支拉出 1.git merge 处于A分支执行,git merge B分支:相当于将commit X、commit Y两次提交,作为了新的commit Z提交到了A分支上。能溯源它真正提交的信息。 2.git rebase 处于B分支,执行git rebase A分支,B分支那边复…

2、蓝牙打印机点灯-GPIO输出控制

1、硬件 1.1、看原理图 初始状态位高电平. 需要驱动PA1输出高低电平控制PA1. 1.2、看手册 a、系统架构图 GPIOA在APB2总线上。 b、RCC使能 GPIOA在第2位。 c、GPIO寄存器配置 端口:PA1 模式:通用推挽输出模式 -- 输出0、1即可 速度:5…

使用强化学习训练神经网络玩俄罗斯方块

一、说明 在 2024 年暑假假期期间,Tim学习并应用了Q-Learning (一种强化学习形式)来训练神经网络玩简化版的俄罗斯方块游戏。在本文中,我将详细介绍我是如何做到这一点的。我希望这对任何有兴趣将强化学习应用于新领域的人有所帮助…

基于springboot的网上商城购物系统

作者:学姐 开发技术:SpringBoot、SSM、Vue、MySQL、JSP、ElementUI、Python、小程序等 文末获取“源码数据库万字文档PPT”,支持远程部署调试、运行安装。 目录 项目包含: 开发说明: 系统功能: 项目截图…

API架构风格的深度解析与选择策略:SOAP、REST、GraphQL与RPC

❃博主首页 &#xff1a; 「码到三十五」 &#xff0c;同名公众号 :「码到三十五」&#xff0c;wx号 : 「liwu0213」 ☠博主专栏 &#xff1a; <mysql高手> <elasticsearch高手> <源码解读> <java核心> <面试攻关> ♝博主的话 &#xff1a…

【网络协议】开放式最短路径优先协议OSPF详解(四)

前言 在本章的第一部分和第二部分中&#xff0c;我们探讨了OSPF的基本配置&#xff0c;并进一步学习了更多OSPF的概念&#xff0c;例如静态路由的重分发及其度量值。在第三部分中&#xff0c;我们讨论了多区域OSPF。在第四部分中&#xff0c;我们将关注OSPF与多访问网络&#…

上门按摩系统架构与功能分析

一、系统架构 服务端&#xff1a;Java&#xff08;最低JDK1.8&#xff0c;支持JDK11以及JDK17&#xff09;数据库&#xff1a;MySQL数据库&#xff08;标配5.7版本&#xff0c;支持MySQL8&#xff09;ORM框架&#xff1a;Mybatis&#xff08;集成通用tk-mapper&#xff0c;支持…

攻防世界 ics-07

点击之后发现有个项目管理能进&#xff0c;点进去&#xff0c;点击看到源码&#xff0c;如下三段 <?php session_start(); if (!isset($_GET[page])) { show_source(__FILE__); die(); } if (isset($_GET[page]) && $_GET[page] ! index.php) { include(flag.php);…

Spring Boot教程之四十九:Spring Boot – MongoRepository 示例

Spring Boot – MongoRepository 示例 Spring Boot 建立在 Spring 之上&#xff0c;包含 Spring 的所有功能。由于其快速的生产就绪环境&#xff0c;使开发人员能够直接专注于逻辑&#xff0c;而不必费力配置和设置&#xff0c;因此如今它正成为开发人员的最爱。Spring Boot 是…

测试ip端口-telnet开启与使用

前言 开发过程中我们总会要去测试ip通不通&#xff0c;或者ip下某个端口是否可以联通&#xff0c;为此我们可以使用telnet 命令来实现。 一、telnet 开启 可能有些人使用telnet报错&#xff0c;不是内部命令&#xff0c;可以如下开启&#xff1a; 1、打开控制面板&#xff…

SpringBoot3动态切换数据源

背景 随着公司业务战略的发展&#xff0c;相关的软件服务也逐步的向多元化转变&#xff0c;之前是单纯的拿项目&#xff0c;赚人工钱&#xff0c;现在开始向产品化\服务化转变。最近雷袭又接到一项新的挑战&#xff1a;了解SAAS模型&#xff0c;考虑怎么将公司的产品转换成多租…

爬虫学习记录

1.概念 通过编写程序,模拟浏览器上网,然后让其去互联网上抓取数据的过程 通用爬虫:抓取的是一整张页面数据聚焦爬虫:抓取的是页面中的特定局部内容增量式爬虫:监测网站中数据更新的情况,只会抓取网站中最新更新出来的数据 robots.txt协议: 君子协议,网站后面添加robotx.txt…

通过 route 或 ip route 管理Linux主机路由

目录 一&#xff1a;route 使用说明1、查看路由信息2、删除指定路由3、增加指定路由 二&#xff1a;ip route 使用说明1、查看主机路由2、新增主机路由3、删除主机路由 通过route 或者ip route修改Linux主机路由后属于临时生效&#xff0c;系统重启后就恢复默认值了&#xff0c…