推荐40个以上比较好的目标检测模型?
目标检测是指在图像中找到并标识出特定目标的计算机视觉任务。近年来,机器学习技术的发展使得目标检测取得了长足进步。目前有许多优秀的目标检测模型,下面是推荐的40个以上的比较好的目标检测模型:
R-CNN (Regions with CNN features)
Fast R-CNN
Faster R-CNN
Mask R-CNN
YOLO (You Only Look Once)
SSD (Single Shot MultiBox Detector)
RetinaNet
FPN (Feature Pyramid Network)
R-FCN (Region-based Fully Convolutional Network)
M2Det
CornerNet
CenterNet
ATSS (ATtentional Selective Search)
Grid R-CNN
TRIDENT
Hybrid Task Cascade
FCOS (Fully Convolutional One-Stage Object Detection)
RepPoints
BlazeFace
EfficientDet
DetNet
SOLO (Simple One-stage Object Detection)
FCOS-plus
ATSS-Retina
FoveaBox
FreeAnchor
FANet (Fast Attentive Network)
Guided Anchoring
Libra R-CN