OpenCV C++案例实战二十《银行卡号识别》

OpenCV C++案例实战二十《银行卡号识别》

  • 前言
  • 一、获取模板图像
    • 1.1 功能效果
    • 1.2 功能源码
  • 二、银行卡号定位
    • 2.1 将银行卡号切割成四块
      • 2.1.1 功能效果
      • 2.1.2 功能源码
    • 2.2 字符切割
      • 2.2.1 功能效果
      • 2.2.2 功能源码
  • 三、字符识别
    • 3.1.读取文件
    • 3.2.字符匹配
    • 3.3.功能源码
  • 四、效果显示
    • 4.1 功能源码
    • 4.2 效果显示
  • 五、源码
    • 5.1 hpp文件
    • 5.2 cpp文件
    • 5.3 main文件
  • 总结


前言

本文将使用OpenCV C++ 进行银行卡号识别。主要步骤可以细分为:
1、 获取模板图像
2、银行卡号区域定位
3、字符切割
4、模板匹配
5、效果显示
接下来就具体看看是如何一步步实现的吧。

一、获取模板图像

请添加图片描述
如图所示,这是我们的模板图像。我们需要将上面的字符一一切割出来保存,以便进行后续的字符匹配环节。先进行图像灰度、阈值等操作进行轮廓提取,这里就不再细说。这里我想说的是,由于经过轮廓检索,提取出来的字符并不是按(0、1、2…7、8、9)顺序排列,所以,在这里我自定义了一个Card结构体,用于图像排序。具体请看源码。

1.1 功能效果

请添加图片描述
如图为顺序切割出来的模板字符。

1.2 功能源码

bool Get_Template(Mat temp, vector<Card>&Card_Temp)
{//图像预处理Mat gray;cvtColor(temp, gray, COLOR_BGR2GRAY);Mat thresh;threshold(gray, thresh, 0, 255, THRESH_BINARY_INV|THRESH_OTSU);//轮廓检测vector <vector<Point>> contours;findContours(thresh, contours, RETR_EXTERNAL, CHAIN_APPROX_SIMPLE);for (int i = 0; i < contours.size(); i++){Rect rect = boundingRect(contours[i]);double ratio = double(rect.width) / double(rect.height);//筛选出字符轮廓if (ratio > 0.5 && ratio < 1){/*rectangle(temp, rect, Scalar(0, 255, 0));*/Mat roi = temp(rect);  //将字符扣出,放入Card_Temp容器备用Card_Temp.push_back({ roi ,rect });}}if (Card_Temp.empty())return false;//进行字符排序,使其按(0、1、2...7、8、9)顺序排序for (int i = 0; i < Card_Temp.size()-1; i++){for (int j = 0; j < Card_Temp.size() - 1 - i; j++){if (Card_Temp[j].rect.x > Card_Temp[j + 1].rect.x){Card temp = Card_Temp[j];Card_Temp[j] = Card_Temp[j + 1];Card_Temp[j + 1] = temp;}}}return true;
}

二、银行卡号定位

请添加图片描述
如图所示,这是本案例需要识别的银行卡。从图中可以看出,我们需要将银行卡号切割出来首先得将卡号分为4个小块切割,之后再需要将每一小块上的字符切割。接下来一步步看是如何操作的。

2.1 将银行卡号切割成四块

首先第一步得先进行图像预处理,通过灰度、二值化、形态学等操作提取出卡号轮廓。这里的图像预处理需要根据图像特征自行确定,并不是所有的步骤都是必须的,我们最终的目的是为了定位银行卡号所在轮廓位置。这里我使用的是二值化、以及形态学闭操作。

	//形态学操作、以便找到银行卡号区域轮廓Mat gray;cvtColor(src, gray, COLOR_BGR2GRAY);Mat gaussian;GaussianBlur(gray, gaussian, Size(3, 3), 0);Mat thresh;threshold(gaussian, thresh, 0, 255, THRESH_BINARY | THRESH_OTSU);Mat close;Mat kernel2 = getStructuringElement(MORPH_RECT, Size(15, 5));morphologyEx(thresh, close, MORPH_CLOSE, kernel2);

经过灰度、阈值、形态学操作后的图像如下图所示。我们已经将银行卡号分为四个小矩形块,接下来只需通过轮廓查找、筛选就可以扣出这四个ROI区域了。
请添加图片描述

	vector<vector<Point>>contours;findContours(close, contours, RETR_EXTERNAL, CHAIN_APPROX_SIMPLE);for (int i = 0; i < contours.size(); i++){//通过面积、长宽比筛选出银行卡号区域double area = contourArea(contours[i]);if (area > 800 && area < 1400){Rect rect = boundingRect(contours[i]);float ratio = double(rect.width) / double(rect.height);if (ratio > 2.8 && ratio < 3.1){Mat ROI = src(rect);Block_ROI.push_back({ ROI ,rect });}}}

请添加图片描述
同理,我们需要将切割下来的小块按照它原来的顺序存储。

	for (int i = 0; i < Block_ROI.size()-1; i++){for (int j = 0; j < Block_ROI.size() - 1 - i; j++){if (Block_ROI[j].rect.x > Block_ROI[j + 1].rect.x){Card temp = Block_ROI[j];Block_ROI[j] = Block_ROI[j + 1];Block_ROI[j + 1] = temp;}}}

2.1.1 功能效果

请添加图片描述

2.1.2 功能源码

bool Cut_Block(Mat src, vector<Card>&Block_ROI)
{//形态学操作、以便找到银行卡号区域轮廓Mat gray;cvtColor(src, gray, COLOR_BGR2GRAY);Mat gaussian;GaussianBlur(gray, gaussian, Size(3, 3), 0);Mat thresh;threshold(gaussian, thresh, 0, 255, THRESH_BINARY | THRESH_OTSU);Mat close;Mat kernel2 = getStructuringElement(MORPH_RECT, Size(15, 5));morphologyEx(thresh, close, MORPH_CLOSE, kernel2);vector<vector<Point>>contours;findContours(close, contours, RETR_EXTERNAL, CHAIN_APPROX_SIMPLE);for (int i = 0; i < contours.size(); i++){//通过面积、长宽比筛选出银行卡号区域double area = contourArea(contours[i]);if (area > 800 && area < 1400){Rect rect = boundingRect(contours[i]);float ratio = double(rect.width) / double(rect.height);if (ratio > 2.8 && ratio < 3.1){//rectangle(src, rect, Scalar(0, 255, 0), 2);Mat ROI = src(rect);Block_ROI.push_back({ ROI ,rect });}}}if (Block_ROI.size()!=4)return false;for (int i = 0; i < Block_ROI.size()-1; i++){for (int j = 0; j < Block_ROI.size() - 1 - i; j++){if (Block_ROI[j].rect.x > Block_ROI[j + 1].rect.x){Card temp = Block_ROI[j];Block_ROI[j] = Block_ROI[j + 1];Block_ROI[j + 1] = temp;}}}//for (int i = 0; i < Block_ROI.size(); i++)//{//	imshow(to_string(i), Block_ROI[i].mat);//	waitKey(0);//}return true;
}

2.2 字符切割

由步骤2.1,我们已经将银行卡号定位,且顺序切割成四个小块。接下来,我们只需要将他们依次的将字符切割下来就可以了。其实切割字符跟上面的切割小方块是差不多的,这里就不再多说了。在这里我着重要说明的是,切割出来的字符相对于银行卡所在位置。
请添加图片描述
由步骤2.1,我们顺序切割出来四个小方块。以其中一个小方块为例,当时我们存储了rect变量,它表示该小方块相对于图像起点(X,Y),宽W,高H。而步骤2.2我们需要做的就是将这个小方块的字符切割出来,那么每一个字符相对于小方块所在位置为起点(x,y),宽w,高h。所以,这些字符相当于银行卡所在位置就是起点(X+x,Y+y),宽 (w),高(h)。具体请细看源码。也比较简单容易理解。

	//循环上面切割出来的四个小块,将上面的字符一一切割出来。for (int i = 0; i < Block_ROI.size(); i++){Mat roi_gray;cvtColor(Block_ROI[i].mat, roi_gray, COLOR_BGR2GRAY);Mat roi_thresh;threshold(roi_gray, roi_thresh, 0, 255, THRESH_BINARY|THRESH_OTSU);vector <vector<Point>> contours;findContours(roi_thresh, contours, RETR_EXTERNAL, CHAIN_APPROX_SIMPLE);for (int j = 0; j < contours.size(); j++){Rect rect = boundingRect(contours[j]);//字符相对于银行卡所在的位置Rect roi_rect(rect.x + Block_ROI[i].rect.x, rect.y + Block_ROI[i].rect.y, rect.width, rect.height);	Mat r_roi = Block_ROI[i].mat(rect);Slice_ROI.push_back({ r_roi ,roi_rect });		}}

同样,在这里我们也需要将切割出来的字符顺序排序。即银行卡上的号码是怎样排序的,我们就需要怎样排序保存

	for (int i = 0; i < Slice_ROI.size() - 1; i++){for (int j = 0; j < Slice_ROI.size() - 1 - i; j++){if (Slice_ROI[j].rect.x > Slice_ROI[j + 1].rect.x){Card temp = Slice_ROI[j];Slice_ROI[j] = Slice_ROI[j + 1];Slice_ROI[j + 1] = temp;}}}

2.2.1 功能效果

请添加图片描述
如图为顺序切割出来的字符

2.2.2 功能源码

bool Cut_Slice(vector<Card>&Block_ROI,vector<Card>&Slice_ROI)
{//循环上面切割出来的四个小块,将上面的字符一一切割出来。for (int i = 0; i < Block_ROI.size(); i++){Mat roi_gray;cvtColor(Block_ROI[i].mat, roi_gray, COLOR_BGR2GRAY);Mat roi_thresh;threshold(roi_gray, roi_thresh, 0, 255, THRESH_BINARY|THRESH_OTSU);vector <vector<Point>> contours;findContours(roi_thresh, contours, RETR_EXTERNAL, CHAIN_APPROX_SIMPLE);for (int j = 0; j < contours.size(); j++){Rect rect = boundingRect(contours[j]);//字符相对于银行卡所在的位置Rect roi_rect(rect.x + Block_ROI[i].rect.x, rect.y + Block_ROI[i].rect.y, rect.width, rect.height);	Mat r_roi = Block_ROI[i].mat(rect);Slice_ROI.push_back({ r_roi ,roi_rect });		}}if (Slice_ROI.size() != 16) return false;for (int i = 0; i < Slice_ROI.size() - 1; i++){for (int j = 0; j < Slice_ROI.size() - 1 - i; j++){if (Slice_ROI[j].rect.x > Slice_ROI[j + 1].rect.x){Card temp = Slice_ROI[j];Slice_ROI[j] = Slice_ROI[j + 1];Slice_ROI[j + 1] = temp;}}}//for (int i = 0; i < Slice_ROI.size(); i++)//{//	imshow(to_string(i), Slice_ROI[i].mat);//	waitKey(0);//}return true;
}

三、字符识别

3.1.读取文件

请添加图片描述
如图所示,为模板图像对应的label。我们需要读取文件,进行匹配。

bool ReadData(string filename, vector<int>&label)
{fstream fin;fin.open(filename, ios::in);if (!fin.is_open()){cout << "can not open the file!" << endl;return false;}int data[10] = { 0 };for (int i = 0; i < 10; i++){fin >> data[i];}fin.close();for (int i = 0; i < 10; i++){label.push_back(data[i]);}return true;
}

3.2.字符匹配

在这里,我的思路是:使用一个for循环,将我们切割出来的字符与现有的模板一一进行匹配。使用的算法是图像模板匹配matchTemplate。具体用法请大家自行查找相关资料。具体请看源码

3.3.功能源码

bool Template_Matching(vector<Card>&Card_Temp,vector<Card>&Block_ROI, vector<Card>&Slice_ROI,vector<int>&result_index)
{for (int i = 0; i < Slice_ROI.size(); i++){//将字符resize成合适大小,利于识别resize(Slice_ROI[i].mat, Slice_ROI[i].mat, Size(60, 80), 1, 1, INTER_LINEAR);Mat gray;cvtColor(Slice_ROI[i].mat, gray, COLOR_BGR2GRAY);int maxIndex = 0;double Max = 0.0;for (int j = 0; j < Card_Temp.size(); j++){		resize(Card_Temp[j].mat, Card_Temp[j].mat, Size(60, 80), 1, 1, INTER_LINEAR);Mat temp_gray;cvtColor(Card_Temp[j].mat, temp_gray, COLOR_BGR2GRAY);//进行模板匹配,识别数字Mat result;matchTemplate(gray, temp_gray, result, TM_SQDIFF_NORMED);double minVal, maxVal;Point minLoc, maxLoc;minMaxLoc(result, &minVal, &maxVal, &minLoc, &maxLoc);//得分最大的视为匹配结果if (maxVal > Max){Max = maxVal;maxIndex = j; //匹配结果}}result_index.push_back(maxIndex);//将匹配结果进行保存}if (result_index.size() != 16)return false;return true;
}

四、效果显示

4.1 功能源码

bool Show_Result(Mat src, vector<Card>&Block_ROI,vector<Card>&Slice_ROI, vector<int>&result_index)
{//读取label标签vector<int>label;if (!ReadData("label.txt", label))return false;//将匹配结果进行显示for (int i = 0; i < Block_ROI.size(); i++){rectangle(src, Rect(Block_ROI[i].rect.tl(), Block_ROI[i].rect.br()), Scalar(0, 255, 0), 2);}for (int i = 0; i < Slice_ROI.size(); i++){cout << label[result_index[i]] << " ";putText(src, to_string(label[result_index[i]]), Point(Slice_ROI[i].rect.tl()), FONT_HERSHEY_SIMPLEX, 1, Scalar(0, 0, 255), 2);}imshow("Demo", src);waitKey(0);destroyAllWindows();return true;
}

4.2 效果显示

请添加图片描述
请添加图片描述
如图所示,为本案例最终的效果展示。

五、源码

5.1 hpp文件

#pragma once
#include<opencv2/opencv.hpp>
#include<iostream>struct Card
{cv::Mat mat;cv::Rect rect;
};//获取模板图像
bool Get_Template(cv::Mat temp, std::vector<Card>&Card_Temp);//将银行卡卡号部分切成四块
bool Cut_Block(cv::Mat src, std::vector<Card>&Block_ROI);//将每一块数字区域切分出单独数字
bool Cut_Slice(std::vector<Card>&Block_ROI, std::vector<Card>&Slice_ROI);//将数字与模板进行模板匹配
bool Template_Matching(std::vector<Card>&Card_Temp, std::vector<Card>&Block_ROI,std::vector<Card>&Slice_ROI,std::vector<int>&result_index);//显示最终结果
bool Show_Result(cv::Mat src,std::vector<Card>&Block_ROI, std::vector<Card>&Slice_ROI,std::vector<int>&result_index);

5.2 cpp文件

#include<iostream>
#include"CardDectection.h"
#include<fstream>
using namespace std;
using namespace cv;bool Get_Template(Mat temp, vector<Card>&Card_Temp)
{//图像预处理Mat gray;cvtColor(temp, gray, COLOR_BGR2GRAY);Mat thresh;threshold(gray, thresh, 0, 255, THRESH_BINARY_INV|THRESH_OTSU);//轮廓检测vector <vector<Point>> contours;findContours(thresh, contours, RETR_EXTERNAL, CHAIN_APPROX_SIMPLE);for (int i = 0; i < contours.size(); i++){Rect rect = boundingRect(contours[i]);double ratio = double(rect.width) / double(rect.height);//筛选出字符轮廓if (ratio > 0.5 && ratio < 1){/*rectangle(temp, rect, Scalar(0, 255, 0));*/Mat roi = temp(rect);  //将字符扣出,放入Card_Temp容器备用Card_Temp.push_back({ roi ,rect });}}if (Card_Temp.empty())return false;//进行字符排序,使其按(0、1、2...7、8、9)顺序排序for (int i = 0; i < Card_Temp.size()-1; i++){for (int j = 0; j < Card_Temp.size() - 1 - i; j++){if (Card_Temp[j].rect.x > Card_Temp[j + 1].rect.x){Card temp = Card_Temp[j];Card_Temp[j] = Card_Temp[j + 1];Card_Temp[j + 1] = temp;}}}//for (int i = 0; i < Card_Temp.size(); i++)//{//	imshow(to_string(i), Card_Temp[i].mat);//	waitKey(0);//}return true;
}bool Cut_Block(Mat src, vector<Card>&Block_ROI)
{//形态学操作、以便找到银行卡号区域轮廓Mat gray;cvtColor(src, gray, COLOR_BGR2GRAY);Mat gaussian;GaussianBlur(gray, gaussian, Size(3, 3), 0);Mat thresh;threshold(gaussian, thresh, 0, 255, THRESH_BINARY | THRESH_OTSU);Mat close;Mat kernel2 = getStructuringElement(MORPH_RECT, Size(15, 5));morphologyEx(thresh, close, MORPH_CLOSE, kernel2);vector<vector<Point>>contours;findContours(close, contours, RETR_EXTERNAL, CHAIN_APPROX_SIMPLE);for (int i = 0; i < contours.size(); i++){//通过面积、长宽比筛选出银行卡号区域double area = contourArea(contours[i]);if (area > 800 && area < 1400){Rect rect = boundingRect(contours[i]);float ratio = double(rect.width) / double(rect.height);if (ratio > 2.8 && ratio < 3.1){//rectangle(src, rect, Scalar(0, 255, 0), 2);Mat ROI = src(rect);Block_ROI.push_back({ ROI ,rect });}}}if (Block_ROI.size()!=4)return false;for (int i = 0; i < Block_ROI.size()-1; i++){for (int j = 0; j < Block_ROI.size() - 1 - i; j++){if (Block_ROI[j].rect.x > Block_ROI[j + 1].rect.x){Card temp = Block_ROI[j];Block_ROI[j] = Block_ROI[j + 1];Block_ROI[j + 1] = temp;}}}//for (int i = 0; i < Block_ROI.size(); i++)//{//	imshow(to_string(i), Block_ROI[i].mat);//	waitKey(0);//}return true;
}bool Cut_Slice(vector<Card>&Block_ROI,vector<Card>&Slice_ROI)
{//循环上面切割出来的四个小块,将上面的字符一一切割出来。for (int i = 0; i < Block_ROI.size(); i++){Mat roi_gray;cvtColor(Block_ROI[i].mat, roi_gray, COLOR_BGR2GRAY);Mat roi_thresh;threshold(roi_gray, roi_thresh, 0, 255, THRESH_BINARY|THRESH_OTSU);vector <vector<Point>> contours;findContours(roi_thresh, contours, RETR_EXTERNAL, CHAIN_APPROX_SIMPLE);for (int j = 0; j < contours.size(); j++){Rect rect = boundingRect(contours[j]);//字符相对于银行卡所在的位置Rect roi_rect(rect.x + Block_ROI[i].rect.x, rect.y + Block_ROI[i].rect.y, rect.width, rect.height);	Mat r_roi = Block_ROI[i].mat(rect);Slice_ROI.push_back({ r_roi ,roi_rect });		}}if (Slice_ROI.size() != 16) return false;for (int i = 0; i < Slice_ROI.size() - 1; i++){for (int j = 0; j < Slice_ROI.size() - 1 - i; j++){if (Slice_ROI[j].rect.x > Slice_ROI[j + 1].rect.x){Card temp = Slice_ROI[j];Slice_ROI[j] = Slice_ROI[j + 1];Slice_ROI[j + 1] = temp;}}}//for (int i = 0; i < Slice_ROI.size(); i++)//{//	imshow(to_string(i), Slice_ROI[i].mat);//	waitKey(0);//}return true;
}bool ReadData(string filename, vector<int>&label)
{fstream fin;fin.open(filename, ios::in);if (!fin.is_open()){cout << "can not open the file!" << endl;return false;}int data[10] = { 0 };for (int i = 0; i < 10; i++){fin >> data[i];}fin.close();for (int i = 0; i < 10; i++){label.push_back(data[i]);}return true;
}bool Template_Matching(vector<Card>&Card_Temp,vector<Card>&Block_ROI, vector<Card>&Slice_ROI,vector<int>&result_index)
{for (int i = 0; i < Slice_ROI.size(); i++){//将字符resize成合适大小,利于识别resize(Slice_ROI[i].mat, Slice_ROI[i].mat, Size(60, 80), 1, 1, INTER_LINEAR);Mat gray;cvtColor(Slice_ROI[i].mat, gray, COLOR_BGR2GRAY);int maxIndex = 0;double Max = 0.0;for (int j = 0; j < Card_Temp.size(); j++){		resize(Card_Temp[j].mat, Card_Temp[j].mat, Size(60, 80), 1, 1, INTER_LINEAR);Mat temp_gray;cvtColor(Card_Temp[j].mat, temp_gray, COLOR_BGR2GRAY);//进行模板匹配,识别数字Mat result;matchTemplate(gray, temp_gray, result, TM_SQDIFF_NORMED);double minVal, maxVal;Point minLoc, maxLoc;minMaxLoc(result, &minVal, &maxVal, &minLoc, &maxLoc);//得分最大的视为匹配结果if (maxVal > Max){Max = maxVal;maxIndex = j; //匹配结果}}result_index.push_back(maxIndex);//将匹配结果进行保存}if (result_index.size() != 16)return false;return true;
}bool Show_Result(Mat src, vector<Card>&Block_ROI,vector<Card>&Slice_ROI, vector<int>&result_index)
{//读取label标签vector<int>label;if (!ReadData("label.txt", label))return false;//将匹配结果进行显示for (int i = 0; i < Block_ROI.size(); i++){rectangle(src, Rect(Block_ROI[i].rect.tl(), Block_ROI[i].rect.br()), Scalar(0, 255, 0), 2);}for (int i = 0; i < Slice_ROI.size(); i++){cout << label[result_index[i]] << " ";putText(src, to_string(label[result_index[i]]), Point(Slice_ROI[i].rect.tl()), FONT_HERSHEY_SIMPLEX, 1, Scalar(0, 0, 255), 2);}imshow("Demo", src);waitKey(0);destroyAllWindows();return true;
}

5.3 main文件

#include<iostream>
#include"CardDectection.h"
using namespace std;
using namespace cv;int main()
{Mat src = imread("card.png");   //源图像 银行卡Mat temp = imread("number.png"); //模板图像if (src.empty() || temp.empty()){cout << "no image data !" << endl;system("pause");return -1;}vector<Card>Card_Temp;if (!Get_Template(temp, Card_Temp)){cout << "模板切割失败!" << endl;system("pause");return -1;}vector<Card>Block_ROI;if (Cut_Block(src, Block_ROI)){vector<Card>Slice_ROI;if (Cut_Slice(Block_ROI, Slice_ROI)){vector<int>result_index;if (Template_Matching(Card_Temp, Block_ROI, Slice_ROI, result_index)){Show_Result(src, Block_ROI, Slice_ROI, result_index);}else{cout << "识别失败!" << endl;system("pause");return -1;}}else{cout << "切片失败!" << endl;system("pause");return -1;}}else{cout << "切块失败!" << endl;system("pause");return -1;}system("pause");return 0;
}

总结

本文使用OpenCV C++进行银行卡号识别,关键步骤有以下几点。
1、银行卡号定位。根据本案例中的银行卡图像特征,我们先将银行卡号所在位置定位。根据图像特征,我们可以将银行卡号分为四个小方块进行定位切割。
2、字符分割。根据前面得到的银行卡号四个小方块,我们需要将它们顺序切割出每一个字符。
3、字符识别。我们将得到的字符与我们准备好的模板一一进行匹配。这里使用的匹配算法是图像模板匹配。

需要说明的是:本案例是根据特定图像、特定需求设定的算法。并不具有鲁棒性。所以在图像预处理阶段很重要。我们需要提取出我们需要的图像特征,这样才能够进行后续的工作。所以本案例也只是使用传统的图像处理手段实现银行卡号识别功能。将大致流程作了一个说明,这里只提供一个参考作用!!!本案例还有一个特别需要注意的就是,我们需要保存切割下来的字符相对于原图像所在的坐标位置。本案例跟OpenCV C++案例实战十《车牌号识别》算法思路非常相似,如果大家感兴趣的话也可以进行参考一下。欢迎大家进行交流学习!!!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/61401.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

opencv实际案例(一)银行卡号的识别

一、目标&#xff1a; 识别银行卡上的卡号 二、思路&#xff1a; 一 、准备模板&#xff0c;能够与卡号数字样式进行模型匹配 二、处理模板图片&#xff1a;将其分割成为单个数字的图片&#xff0c;和所对应的数字相匹配存储可迭代的数据类型中。 读入模板图片&#xff0…

(openCV--python)检测银行卡号 (应用篇)(包含模板图)

适合人群&#xff1a; 有python基础&#xff0c;注重应用、不追求深层次知识的小伙伴。前言&#xff1a; 本文对很多说用到的很多函数都是粗浅地解释一下用法以及作用&#xff0c;并不会解释该函数的具体结构。若想进一步深入了解还请自行谷狗一下。 完整代码 # Author :Eri…

opencv项目实践二(银行卡卡号识别)

任务说明 将银行卡卡号打印输出 实现 一、思路 1、定位银行卡卡号数字区域 2、将银行卡每个卡号数字单独提取出来 3、处理模板图片&#xff0c;将每个模板数字单独提取出来 4、通过模板匹配来识别每个卡号 二、具体代码实现 1、处理模板 卡号数字模板 # 读取模板图片 img_…

CVAT——2. CVAT简单使用

文章目录 基本使用管理员界面登录管理用户添加/删除用户及用户权限管理组管理 任务管理 创建任务和上传标签datumaroanaconda安装datumaro安装datumaro基本使用支持的格式查看帮助文件报错导入projects数据增加 数据标注标注面板使用快捷键左侧工具栏和右侧面板说明追踪模式Tra…

OpenCV图像处理——(实战)信用卡识别

总目录 图像处理总目录←点击这里 十四、信用卡数字识别 识别的图片模板图片 14.1、模板图片处理 读入图片->灰度图->二值图->计算轮廓->存储每一个模板 如果是所需模板匹配只有一个&#xff0c;课直接读入灰度图像即可 这里有10个模板(0-9)&#xff0c;所以需…

关于opencv的实战——银行卡号识别

首先我们先来引入我们所需要的库和我们定义的图像显示&#xff08;方便&#xff09;&#xff1a; import cv2 import numpy as np import imutils from imutils import contours#显示图像 def cv_show(img,name"image"):cv2.imshow(name,img)cv2.waitKey(0)cv2.dest…

13- 信用卡账号识别 (OpenCV基础) (项目十三) *

项目要点 _, ref cv2.threshold(ref, 10, 255, cv2.THRESH_BINARY_INV) 二值化处理图片, 黑白化图片ref cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) 灰度化处理ref_contours, _ cv2.findContours(ref.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) 计算轮廓cv2.dr…

OpenCv图像处理实战——银行卡卡号识别

图像处理项目 测试图片自取区 card1 card2 银行卡卡号识别 from imutils import contours import numpy as np import argparse import imutils import cv2 import myutils #argparse这个库可以让我们直接在命令行中就可以向程序中传入参数并让程序运行。#这两个方法在包中没…

【OpenCV】 ⚠️实战⚠️ 银行卡卡号读取 ☢️建议手收藏☢️

【OpenCV】 ⚠️实战⚠️ 银行卡卡号读取 概述预处理代码模板预处理银行卡预处理 计算轮廓代码模板轮廓银行卡轮廓 其他程序主函数代码数字分割最终结果 概述 今天带大家使用我们之前学会的知识来实现银行卡卡号读取. 代码分为四个部分: 主函程序, 预处理, 计算轮廓, 其他程序…

openCV实践项目:银行卡卡号识别

本文用于对之前openCV知识点学习的复习及实践。要求达到以下效果&#xff1a; 一、基本流程思路分析 本项目本质上就是进行模板匹配。 注&#xff1a;为多用到所学知识&#xff0c;为了加深理解多加了些步骤&#xff0c;实际上本项目可以很简单就能完成。 1.1 模板处理 模…

什么是物联网平台

1、什么是物联网平台 阿里云物联网平台为设备提供安全可靠的连接通信能力&#xff0c;向下连接海量设备&#xff0c;支撑设备数据采集上云&#xff1b;向上提供云端API&#xff0c;服务端通过调用云端API将指令下发至设备端&#xff0c;实现远程控制。 物联网平台消息通信流程…

新兴 IoT 物联网场景中 MQTT 与 TCP 通信协议对比

在IoT 物联网开发中&#xff0c;大多数通信模组都支持 TCP、UDP、MQTT、CoAP、HTTP、LwM2M 等网络通信协议&#xff0c;其中既有传输层协议&#xff0c;也有应用层的协议&#xff0c;不同协议适用的场景也不同。 我们在设计IoT硬件产品时&#xff0c;通常只需选择一种协议即可。…

lot物联网场景通用架构分享

1.通用参考架构&#xff1a; 2.lot物联网硬件设备上云技术方案&#xff1a; #lot物联网业务链路包含&#xff1a;数据采集&#xff0c;通信连接&#xff0c;数据存储&#xff0c;数据可视化&#xff0c;洞察&#xff0c;行动决策&#xff1b;其中以设备端各种厂商提供得协议差…

物联网网络通讯知识

RTU是什么 RTU英文全称Remote Terminal Units&#xff0c;中文全称为远程终端单元。远程终端设备(RTU)是安装在远程现场的电子设备&#xff0c;用来监视和测量安装在远程现场的传感器和设备。通俗理解就是能够编程的还可以将数据传输到服务器的工具。RTU内部是包含通讯模块的&…

APP与服务器之间通过 http(POST、GET)进行数据交互 ( 实现一个简单的物联网系统-1 )

文章目录 一、APP POST 数据到服务器二、APP 从服务器 GET 数据三、APP 界面部分四、相关疑问五、学习方法六、专栏地址 一、APP POST 数据到服务器 首先 post 的数据应该包括识别这个花卉的信息和我们想要浇水的量&#xff0c;这里我们识别花卉采用花卉的名字&#xff0c;这样…

什么是物联网(Internet of Things)?

你可能在某些时候会听到物联网这个词&#xff0c;但是你对它可能不知所以然&#xff0c;这篇文章让你弄清楚什么是物联网&#xff0c;以及它代表什么&#xff1f; 物联网&#xff08;Internet of Things&#xff09;是指设备到互联网的连接。汽车&#xff0c;厨房电器&#xff…

物联网网关有哪些能力和哪些应用?

工业物联网的应用受到越来越多企业的关注&#xff0c;很多人都了解网关这个概念。网关就是一个网络连接到另一个网口的桥梁&#xff0c;起到协议解析、数据采集的作用&#xff0c;实现运行状态数据的高效利用。 物联网网关具备的能力 1、广泛连接的能力 目前各个行业、不同设…

一文了解物联网网关

物联网是指通过射频识别(RFID)、红外感应器、GPS、激光扫描器等信息传感设备&#xff0c;按约定的协议&#xff0c;实现任何时间、任何地点、任何物体进行信息交换和通信&#xff0c;以实现智能化识别、定位、监控和管理的一种网络。物联网是具有全面感知、可靠传输、智能处理特…

什么是物联网?有哪些应用?终于有人讲明白了

作者&#xff1a;佩里利&#xff08;Perry Lea&#xff09; 来源&#xff1a;大数据DT&#xff08;ID&#xff1a;hzdashuju&#xff09; 我们将从连接设备的角度来研究物联网&#xff0c;这些设备之前未必相互连接或接入互联网。它们可能一直没有太多的计算或通信能力。我们假…

LPWA物联网通信

物联网LPWA是物联网中的无线通信技术之一。 根据物联网无线通信技术的覆盖距离&#xff0c;大致可分为两类&#xff1a;一类是短距离通信技术&#xff0c;包括蓝牙(蓝牙)&#xff1b;NFC,Zigbee、WIFI、NFC&#xff0c;主要用于室内智能家庭、消费电子等场景&#xff1b;另一种…