deeplabv3+街景图片语义分割,无需训练模型,看不懂也没有影响,直接使用,cityscapes数据集_12

目录

    • 1、下载链接
    • 1.1、CSDN链接,==含权重文件直接使用==,建议直接下这个,还不限速。
    • 1.2 Github链接:
    • 2、下载代码,下载预训练好的权重
    • 3、预测代码
    • 4、像素提取,或者说类别提取
    • 5、文档部分内容截图
    • 6、其他数据处理/程序/指导!!!

最近做街景语义分割相关的工作,因为没有gpu训练模型,且训练的模型往往MIOU很低,还不如直接找训练好的模型,所以在github找到了一个模型,具有cityscapes数据集预训练权重,不需要训练模型,不需要看懂模型,一行代码直接出语义分割之后的结果。

语义分割之后,用pyhton统计各个类别所占像素个数,用于后续定量指标的计算。

1、下载链接

1.1、CSDN链接,含权重文件直接使用,建议直接下这个,还不限速。

deeplabv3+代码及权重文件
这个已经包含权重,跳过第二步下载代码,直接第三步预测代码。

1.2 Github链接:

https://github.com/VainF/DeepLabV3Plus-Pytorch
链接失效,直接github搜索:VainF/DeepLabV3Plus-Pytorch

2、下载代码,下载预训练好的权重

在这里插入图片描述

选择哪一个都行,随便下载一个,以DeepLabV3Plus-ResNet101为例
没有checkpoints文件夹就自己建一个。
​​​​在这里插入图片描述

3、预测代码

代码在终端运行,修改完之后,直接复制粘贴运行。
在这里插入图片描述

代码运行位置
单张图片:
python predict.py --input datasets/data/cityscapes/leftImg8bit/train/bremen/bremen_000000_000019_leftImg8bit.png  --dataset cityscapes --model deeplabv3plus_mobilenet --ckpt checkpoints/best_deeplabv3plus_mobilenet_cityscapes_os16.pth --save_val_results_to test_results
文件夹:
python predict.py --input datasets/data/cityscapes/leftImg8bit/train/bremen  --dataset cityscapes --model deeplabv3plus_mobilenet --ckpt checkpoints/best_deeplabv3plus_mobilenet_cityscapes_os16.pth --save_val_results_to test_results

python predict.py 意思是运行predict这个python文件

–input datasets/bremen_000000_000019_leftImg8bit.png 这里是输入文件/输入文件夹,修改为自己的比如:E:\深圳街景\A01街景原图\福田区

–dataset cityscapes 使用的数据集

–model deeplabv3plus_mobilenet 使用的模型,或者deeplabv3plus_resnet101

–ckpt checkpoints/best_deeplabv3plus_mobilenet_cityscapes_os16.pth 权重文件,需要新建checkpoints文件夹,将权重文件放进去。或者使用best_deeplabv3plus_resnet101_cityscapes_os16.pth.tar这个权重文件

注:–model要与–ckpt权重文件保持一致,mobilenet就都mobilenet,resnet101就都resnet101。

–save_val_results_to test_results 输出文件夹,指定路径即可,不存在会按照指定的路径创建

在这里插入图片描述
直接将所有图片进行语义分割,随后将四个图片的像素求平均即可。

建议直接用四个方向的图预测。

如果是全景图的话,建议用ptgui pro拆分成上下前后左右六个方向,保留前后左右四个方向,是否保留上方向,自己考虑。根据我的结果是不建议,全是天空没有意义且模型分错严重。

全景图还是四个方向,见仁见智,论文中都有,只不过更多的是四个方向。

以文件夹为例:
python predict.py --input D:\街景图片  --dataset cityscapes --model deeplabv3plus_resnet101 --ckpt checkpoints/best_deeplabv3plus_resnet101_cityscapes_os16.pth.tar --save_val_results_to  D:\语义分割后的图片

如果下载的模型是:
在这里插入图片描述
–model deeplabv3plus_mobilenet

–ckpt checkpoints/best_deeplabv3plus_mobilenet_cityscapes_os16.pth

如果下载的模型是:
在这里插入图片描述
–model deeplabv3plus_resnet101

–ckpt checkpoints/best_deeplabv3plus_resnet101_cityscapes_os16.pth.tar

出现其他运行的错误,包括但不限于 numpy之类的,百度搜索一下就可以解决。
在这里插入图片描述

语义分割后的示例图片

4、像素提取,或者说类别提取

语义分割之后,统计各类像素数量的代码:

在这里插入图片描述

结果示例图

在这里插入图片描述
在这里插入图片描述
常规提取代码:运行速度比较慢,大概2张/1s(不维护了,也不出了)。

改进提取代码+说明文档:能达到60张/s(取决于cpu),并且文件保存时间几乎为0。文档内容见下图。

需要代码(语义分割结果提取像素的代码,不是模型提升精度的代码)联系邮箱437969428@qq.com,邮箱已设置自动回复!!!随意发送邮件即可获得联系方式。

5、文档部分内容截图

在这里插入图片描述

1

在这里插入图片描述

2

在这里插入图片描述

3

6、其他数据处理/程序/指导!!!

直接看PDF吧,搬过来调格式类似了。
通过网盘分享的文件:v1.1 数据_代码_指导.pdf
链接: https://pan.baidu.com/s/1E93QTFcdl7DQjCYZW1Kj2Q?pwd=GGGX 提取码: GGGX

目录:GIS数据处理/程序/指导,街景百度热力图POI路网建筑物AOI等

  1. 百度热力图指导,买数据提供指导,含详细说明文档。链接0-数据介绍:百度慧眼百度热力图数据处理,可直接用于论文。链接1-原理及应用:百度热力图数据获取,原理,处理及论文应用-CSDN博客 。链接2-Pro操作:百度热力图数据处理流程Arcgis PRO篇,Arcgis,QGIS见链接其他文章-CSDN博客。

  2. 多模型(含全部树模型)分类回归精度结果对比(回复审稿人意见之:为什么选某个模型?比如为什么选XGBoost?)。

    回归模型:线性模型(Linear、Ridge 、Lasso、Huber 、Partial Least Squares),KNN,SVR,树模型(Decision Tree、RF、AdaBoost 、GBDT、XGBoost、LightGBM 、CatBoost )。可自定义增加。
    分类模型:Logistic Regression、Naive Bayes、KNN、SVM、树模型(Decision Tree、RF、AdaBoost 、GBDT、XGBoost、LightGBM 、CatBoost )可自定义增加。
    

3.各种树模型分类回归代码(RF/GBDT/XGBoost/LightGBM/Catboost等模型对比,最优模型最优参数)。
3. 树模型-SHAP分析,上一步选模型,这一步用模型进行分析。
4. GCN用于街道研究,如GCN实现街道功能分类。
5. 树模型-SHAP分析,上一步选模型,这一步用模型进行分析。
6. 街景语义分割后像素提取,指标计算代码(绿视率、天空开阔度、界面围合度、视觉熵/景观多样性等),含详细说明文档。deeplabv3+街景图片语义分割,无需训练模型,看不懂也没有影响,直接使用,cityscapes数据集。
7. 街景主观感知两两对比程序(数据集生成,自定义每张图片出现次数,提示剩余总对比次数,对比程序!最少对比次数,最高的效率。街景主观感知1:街景图片两两对比程序),TrueSkill计算beautiful、safer等维度主观感知评分(原理,代码)均含详细说明文档。街景两两对比程序,Trueskill计算评分代码,训练模型,预测街景。
8. 街景主观感知训练,预测模型(beautiful, safer等自定义维度),多模型对比(ResNet50,ResNet101,EfficientNet、VGGNet、GoogleNet、DenseNet、MobileNet、ShuffleNet、Xception、ConvNeXt、Vision Transformer (ViT)、RegNet等),beautiful和safer维度精度均达到0.89。街景两两对比程序,Trueskill计算评分代码,训练模型,预测街景。
9. 街景图片色彩聚类。
10. 全国街景数据。
11. OSM路网简化指导(详细说明文档,双线变单线,fclass选择,拓扑检查,短道路处理)。
12. POI数据,重分类,各种密度,各种比例,功能混合度/熵/多样性计算。
13. 建筑物各种指标计算(建筑密度,容积率)。
14. 坐标系转化代码(bg09,wgs84,Gcj02等各种地理,投影转化)。
15. GIS相关处理,指标计算,街道街区相关,活力相关,街道品质相关。

邮箱:邮箱已设置自动回复!!!随意发送邮件即可获得联系方式。437969428@qq.com

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/6175.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Java 基于 SpringBoot 的校园外卖点餐平台微信小程序(附源码,部署,文档)

博主介绍:✌程序员徐师兄、7年大厂程序员经历。全网粉丝12w、csdn博客专家、掘金/华为云/阿里云/InfoQ等平台优质作者、专注于Java技术领域和毕业项目实战✌ 🍅文末获取源码联系🍅 👇🏻 精彩专栏推荐订阅👇…

Jetson Xavier NX 安装 CUDA 支持的 PyTorch 指南

本指南将帮助开发者完成在 Jetson Xavier NX 上安装 CUDA 支持的 PyTorch。 安装方法 在 Jetson 上安装 Pytorch 只有两种方法。 一种是直接安装他人已经编译好的 PyTorch 轮子;一种是自己从头开始开始构建 PyTorch 轮子并且安装。 使用轮子安装 可以从我的 Gi…

怎样使用树莓派自己搭建一套ADS-B信号接收系统

0 我们知道,ADS-B全称广播式自动相关监视系统,其实就是飞机发出的广播信号,用明码来对外发送自己的位置、高度、速度、航向等信息,是公开信息。连续接收到一架飞机发出的ADS-B信息后,可以通过其坐标点来描绘出飞机的航…

KETTLE-SAP抽数报错RFC_ERROR_SYSTEM_FAILURE

KETTLE调SAP 合并ECCS相关的函数时报错 2025/01/23 17:56:02 - SAP input.0 - ERROR (version 8.2.0.0-342, build 8.2.0.0-342 from 2018-11-14 10.30.55 by buildguy) : Unexpected error 2025/01/23 17:56:02 - SAP input.0 - ERROR (version 8.2.0.0-342, build 8.2.0.0-3…

困境如雾路难寻,心若清明步自轻---2024年创作回顾

文章目录 前言博客创作回顾第一次被催更第一次获得证书周榜几篇博客互动最多的最满意的引发思考的 写博契机 碎碎念时也运也部分经验 尾 前言 今年三月份,我已写下一篇《近一年多个人总结》,当时还没开始写博客。四月份写博后,就顺手将那篇总…

2024 行远自迩,笃行不怠

2024年是充满变化与挑战的一年,我的开发方向经历了从智能驾驶到工业智能检测,再到机器人感知交互与决策的不断演进。 这一年,我不断拓宽技术视野,深入探索不同领域的技术挑战和应用场景。 最初,我希望专注于单一领域…

【Linux】19.基础IO(1)

文章目录 1. 基础IO1. 文件2. 回顾C文件接口2.1 hello.c写文件2.2 hello.c读文件2.3 接口介绍 3. open函数返回值3.1 文件描述符fd3.2 文件描述符的分配规则3.2.1 代码13.2.2 代码23.2.3 重定向底层原理代码示例3.2.4 使用 dup2 系统调用 3.3 缓冲区刷新问题3.4 FILE 1. 基础IO…

客户案例:向导ERP与金蝶云星空集成方案

一、客户背景 该客户公司主要致力于黄金、铂金、金镶玉首饰的研发设计、生产加工、批发及直营加盟业务。公司总部占地面积目前已达6000多平方米,拥有标准生产厂房和现代化生产设施,拥有一支完善的企业管理团队和专业技工队伍。 该企业目前同时采用向导 E…

RabbitMQ 在实际应用时要注意的问题

1. 幂等性保障 1.1 幂等性介绍 幂等性是数学和计算机科学中某些运算的性质,它们可以被多次应⽤,⽽不会改变初始应⽤的结果. 应⽤程序的幂等性介绍 在应⽤程序中,幂等性就是指对⼀个系统进⾏重复调⽤(相同参数),不论请求多少次,这些请求对系统的影响都是相同的效果. ⽐如数据库…

Cesium特效——城市白模的科技动效的各种效果

最终效果图如下: 实现方法: 步骤一:使用cesiumlib生产白模,格式为3dtiles 注意事项:采用其他方式可能导致白模贴地,从而导致不能实现该效果,例如把步骤二的服务地址改为Cesium Sandcastle 里的…

4_高并发内存池项目_高并发池内存释放设计_ThreadCache/CentralCache/PageCache回收并释放内存

高并发池内存释放设计 对各缓存层释放内存的设计,不仅仅是从上一层回收内存,还包括对回收回来的内存怎样处理更有利于下一缓存层的回收,提高效率。 高并发内存池内存释放步骤: 线程对象释放内存 ↓↓↓↓↓ ThreadCache(1.回收线…

centos9编译安装opensips 二【进阶篇-定制目录+模块】推荐

环境:centos9 last opensips -V version: opensips 3.6.0-dev (x86_64/linux) flags: STATS: On, DISABLE_NAGLE, USE_MCAST, SHM_MMAP, PKG_MALLOC, Q_MALLOC, F_MALLOC, HP_MALLOC, DBG_MALLOC, CC_O0, FAST_LOCK-ADAPTIVE_WAIT ADAPTIVE_WAIT_LOOPS1024, MAX_RE…

分子动力学模拟里的术语:leap-frog蛙跳算法和‌Velocity-Verlet算法

分子动力学模拟(Molecular Dynamics Simulation,简称MD)是一种基于经典力学原理的计算物理方法,用于模拟原子和分子在给定时间内的运动和相互作用‌。以下是关于分子动力学模拟的一些核心术语和概念: ‌定义系统‌&am…

iOS开发设计模式篇第二篇MVVM设计模式

目录 一、什么是MVVM 二、MVVM 的主要特点 三、MVVM 的架构图 四、MVVM 与其他模式的对比 五、如何在iOS中实现MVVM 1.Model 2.ViewModel 3.View (ViewController) 4.双向绑定 5.文中完整的代码地址 六、MVVM 的优缺点 1.优点 2.缺点 七、MVVM 的应用场景 八、结…

【C++图论 并集查找】2492. 两个城市间路径的最小分数|1679

本文涉及知识点 C图论 并集查找(并查集) LeetCode2492. 两个城市间路径的最小分数 给你一个正整数 n ,表示总共有 n 个城市,城市从 1 到 n 编号。给你一个二维数组 roads ,其中 roads[i] [ai, bi, distancei] 表示城市 ai 和 …

Linux应用编程(五)USB应用开发-libusb库

一、基础知识 1. USB接口是什么? USB接口(Universal Serial Bus)是一种通用串行总线,广泛使用的接口标准,主要用于连接计算机与外围设备(如键盘、鼠标、打印机、存储设备等)之间的数据传输和电…

⽤vector数组实现树的存储(孩⼦表示法)c++

在我们遇到的算法题中, ⼀般给出的树结构都是有编号的,这样会简化我们之后存储树的操作 ,⼀般提供两个信息; 结点的个数 n;n-1条x结点与y结点相连的边 题⽬描述: ⼀共9个结点셈 1号结点为根节点,接下来8⾏&#xff…

一个基于Python+Appium的手机自动化项目~~

本项目通过PythonAppium实现了抖音手机店铺的自动化询价,可以直接输出excel,并带有详细的LOG输出。 1.excel输出效果: 2. LOG效果: 具体文件内容见GitCode: 项目首页 - douyingoods:一个基于Pythonappium的手机自动化项目,实现了…

基于微信小程序的童装商城的设计与实现(LW+源码+讲解)

专注于大学生项目实战开发,讲解,毕业答疑辅导,欢迎高校老师/同行前辈交流合作✌。 技术范围:SpringBoot、Vue、SSM、HLMT、小程序、Jsp、PHP、Nodejs、Python、爬虫、数据可视化、安卓app、大数据、物联网、机器学习等设计与开发。 主要内容:…

方便快捷的软件展示平台查找和下载所需的软件

## 软件展示平台项目概述 背景: 随着互联网的发展,软件的数量日益增长,用户需要一款方便快捷的软件展示平台来查找和下载所需的软件。本软件展示平台旨在为用户提供一个集中展示各类软件的平台,方便用户快速找到所需的软件并进行…