GS论文阅读--Hard Gaussian Splatting

前言

本文也是对高斯点云的分布进行优化的,看!
在这里插入图片描述


文章目录

  • 前言
  • 1.背景介绍
  • 2.关键内容
    • 2.1 位置梯度驱动HGS
    • 2.2 渲染误差引导HGS
  • 3.文章贡献


1.背景介绍

  1. 在训练过程中,它严重依赖于视图空间位置梯度的平均幅度来增长高斯以减少渲染损失。然而,这种平均操作平滑了来自不同视点的位置梯度和来自不同像素的渲染误差,阻碍了许多有缺陷的高斯的生长和优化。位置梯度的平均幅度不能反映某些局部图像区域的明显渲染误差,特别是当这些区域仅由少数视点观察时。这导致某些区域出现强烈的虚假伪影。

2.关键内容

为了解决上面分析的问题,本文提出了硬高斯溅射,被称为HGS,从多视图显著的位置梯度和渲染误差中发现硬高斯。通过这种方式,我们的方法可以生长和优化这些硬高斯,以恢复更完整的3D场景,从而提高渲染质量。

2.1 位置梯度驱动HGS

视点空间位置梯度反映了某一视点下的整体图像重建质量。原始的高斯增长准则在M次迭代中对n个视图空间位置梯度进行平均,以找到增长的候选者。虽然平均操作可以减少噪声的影响,但它平滑了一些个别较大的位置梯度。

事实上,较大的视图空间位置梯度也表明其对应的高斯需要填充空白区域。然而,它们被忽略了原来的增长标准。因此,我们提出了位置梯度驱动的HGS(PGHGS),它揭示了硬高斯从多视图的重要位置梯度。为了可靠地捕获显著的位置梯度,我们首先将高斯Gi的n个位置梯度排序为:
在这里插入图片描述
其中sort↓表示降序排序。然后,如果第k个最大的位置梯度满足:
在这里插入图片描述
其中λ是控制挖掘范围的常数。通过增长这些硬高斯,可以减少某些个体视点下的较大重建误差。这有助于跨视图呈现一致性。

2.2 渲染误差引导HGS

通过深入研究视图空间位置梯度的计算,我们知道它是相对于视空间投影点的平均误差的梯度。因此,视图空间位置梯度不能有效地反映某些局部图像区域的重建误差,特别是当这些区域仅由少数视点观察时。为了解决这个问题,我们引入渲染错误引导的HGS(REHGS)链接硬高斯与局部渲染误差。然而,由于像素渲染误差纠缠来自多个高斯的贡,建立这种联系是一个挑战。

为此,我们利用具有最大贡献的高斯函数来关联像素渲染误差。具体地,对于像素u,其渲染索引被定义为 i d x ( u ) = a r g m a x w i idx(u)= arg max w_i idx(u)=argmaxwi。该算法考虑了α-混合中高斯分布的最大贡献,从而在一定程度上反映了像素绘制误差与高斯分布之间的关系。在此基础上,高斯Gi对这些像素 S i = u ∣ i d x ( u ) = i , u ∈ P S_i = {u| idx(u)= i,u ∈ P} Si=uidxu=iuP.为了检测明显的局部渲染错误而不是离群像素,我们首先根据Si的大小识别潜在的过大高斯。一个高斯将被认为是潜在的过大,容易模糊的人工制品,当存在如下情况:
在这里插入图片描述
其中 τ l a r g e τ_{large} τlarge是控制潜在大区域的范围的阈值。该条件可以有效地找到可能导致毛刺伪影(“过度重建”)的高斯,如图3(c)和(d)的黄色框所示。事实上,可以用可能过大的高斯描述低纹理区域和重复纹理,如图3(d)的蓝色框所示。因此,仅使用等式。(8)以确定过大的高斯将导致误报。为了更准确地定位导致模糊伪影的高斯,我们利用渲染误差来挖掘硬高斯。对于一个可能过大的高斯Gi,我们将其投影到当前训练视点j中以获得对应的像素 u i , j u_{i,j} ui,j。然后,这个高斯将被认为是硬高斯,如果它满足:
在这里插入图片描述
其中, I j I_j Ij I ~ j \tilde{I}_j I~j分别表示视点j下的地面实况和渲染图像。SSIM是指结构相似性指数测量,它测量两个图像之间的相似性。τSSIM是判断渲染质量的阈值。请注意,选择SSIM是因为它可以对图像执行局部分析,使其适合检测图像中的结构变化。在潜在的过大高斯和像素渲染误差的指导下,我们的方法可以在真正模糊的区域中定位硬高斯,如图3(e)所示。此外,在M次迭代期间,这样的高斯应该被至少两个视图看到。这避免了由仅由单个视图确定的硬高斯引起的不稳定增长。
## 2.2 重定位

3.文章贡献

  1. 我们提出了HGS,它从多视图重要的位置梯度和渲染误差中挖掘硬高斯,以进行生长和优化。这消除了跨视图渲染的不一致性,并减少了观察较少的区域中的渲染错误,从而显著提高了渲染性能。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/6451.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

消息队列篇--原理篇--Pulsar(Namespace,BookKeeper,类似Kafka甚至更好的消息队列)

Apache Pulusar是一个分布式、多租户、高性能的发布/订阅(Pub/Sub)消息系统,最初由Yahoo开发并开源。它结合了Kafka和传统消息队列的优点,提供高吞吐量、低延迟、强一致性和可扩展的消息传递能力,适用于大规模分布式系…

当 Facebook 窥探隐私:用户的数字权利如何捍卫?

随着社交平台的普及,Facebook 已经成为全球用户日常生活的一部分。然而,伴随而来的隐私问题也愈发严峻。近年来,Facebook 频频被曝出泄露用户数据、滥用个人信息等事件,令公众对其隐私保护措施产生质疑。在这个信息化时代&#xf…

OSCP - Proving Grounds - Quackerjack

主要知识点 端口转发 具体步骤 执行nmap扫描,开了好多端口,我先试验80和8081,看起来8081比较有趣 Nmap scan report for 192.168.51.57 Host is up (0.0011s latency). Not shown: 65527 filtered tcp ports (no-response) PORT STATE SERVICE …

Hive之加载csv格式数据到hive

场景: 今天接了一个需求,将测试环境的hive数据导入到正式环境中。但是不需要整个流程的迁移,只需要迁移ads表 解决方案: 拿到这个需求首先想到两个方案: 1、将数据通过insert into语句导出,然后运行脚本 …

PHP如何封装项目框架达到高可用、高性能、高并发

很多初创公司为了快速上线业务,开发时间由本来的6个月压缩到3个月甚至2个月。开发人员只能根据时间及业务需求去git上找现有的项目二次开发或者是一个空框架根据业务一点一点的去做,上述两种方案虽然也可以上线但是对于业务本身存在的问题也是很大的&…

探究 Facebook 隐私安全发展方向,未来走向何方?

随着社交媒体的普及,隐私和数据安全问题成为了全球关注的焦点。Facebook,作为全球最大的社交平台之一,其隐私安全问题尤其引人注目。近年来,随着用户数据泄露事件的不断发生,Facebook 不断调整其隐私政策,探…

【Linux】其他备选高级IO模型

其他高级 I/O 模型 以上基本介绍的都是同步IO相关知识点,即在同步I/O模型中,程序发起I/O操作后会等待I/O操作完成,即程序会被阻塞,直到I/O完成。整个I/O过程在同一个线程中进行,程序在等待期间不能执行其他任务。下面…

R语言学习笔记之开发环境配置

一、概要 整个安装过程及遇到的问题记录 操作步骤备注(包含遇到的问题)1下载安装R语言2下载安装RStudio3离线安装pacman提示需要安装Rtools4安装Rtoolspacman、tidyfst均离线安装完成5加载tidyfst报错 提示需要安装依赖,试错逐步下载并安装…

数据分析 six库

目录 起因 什么是six库 智能识别py2或3 ​编辑 起因 ModuleNotFoundError: No module named sklearn.externals.six sklearn.externals.six 模块在较新版本的 scikit-learn 中已经被移除。如果你在尝试使用这个模块时遇到了 ModuleNotFoundError: No module named sklear…

HTML5使用favicon.ico图标

目录 1. 使用favicon.ico图标 1. 使用favicon.ico图标 favicon.ico一般用于作为网站标志,它显示在浏览器的地址栏或者标签上 制作favicon图标 选择一个png转ico的在线网站,这里以https://www.bitbug.net/为例。上传图片,目标尺寸选择48x48&a…

Langchain+文心一言调用

import osfrom langchain_community.llms import QianfanLLMEndpointos.environ["QIANFAN_AK"] "" os.environ["QIANFAN_SK"] ""llm_wenxin QianfanLLMEndpoint()res llm_wenxin.invoke("中国国庆日是哪一天?") print(…

Linux系统下速通stm32的clion开发环境配置

陆陆续续搞这个已经很久了。 因为自己新电脑是linux系统无法使用keil,一开始想使用vscode里的eide但感觉不太好用;后面想直接使用cudeide但又不想妥协,想趁着这个机会把linux上的其他单片机开发配置也搞明白;而且非常想搞懂cmake…

Unity自学之旅05

Unity自学之旅05 Unity学习之旅⑤📝 AI基础与敌人行为🥊 AI导航理论知识(基础)开始实践 🎃 敌人游戏机制追踪玩家攻击玩家子弹碰撞完善游戏失败条件 🤗 总结归纳 Unity学习之旅⑤ 📝 AI基础与敌…

java常量池

目录 1 Class常量池 2 运行时常量池 3 字符串常量池 3.1 为什么要设计字符串常量池 3.2 字符串对象三种创建姿势 3.3 字符串的操作 3.4 字符串的不可变性 4 包装类型常量池 1 Class常量池 class 文件的资源仓库javap命令可以查看class常量池 主要包含字面量和符号引用字面量 由…

ES6语法

一、Let、const、var变量定义 1.let 声明的变量有严格局部作用域 <!DOCTYPE html> <html lang"en"> <head><meta charset"UTF-8"><meta name"viewport" content"widthdevice-width, initial-scale1.0"&g…

windows平台通过命令行安装前端开发环境

访问node.js官网 访问node.js官网https://nodejs.org/en/download/&#xff0c;可以看到类似画面&#xff1a; 可以获取以下命令 # Download and install fnm: winget install Schniz.fnm # Download and install Node.js: fnm install 22 # Verify the Node.js version: no…

【2025小年源码免费送】

&#x1f496;学习知识需费心&#xff0c; &#x1f4d5;整理归纳更费神。 &#x1f389;源码免费人人喜&#xff0c; &#x1f525;码农福利等你领&#xff01; &#x1f496;山高路远坑又深&#xff0c; &#x1f4d5;大军纵横任驰奔&#xff0c; &#x1f389;谁敢横刀立马行…

深入 Flutter 和 Compose 的 PlatformView 实现对比,它们是如何接入平台控件

在上一篇《深入 Flutter 和 Compose 在 UI 渲染刷新时 Diff 实现对比》发布之后&#xff0c;收到了大佬的“催稿”&#xff0c;想了解下 Flutter 和 Compose 在 PlatformView 实现上的对比&#xff0c;恰好过去写过不少 Flutter 上对于 PlatformView 的实现&#xff0c;这次恰好…

小游戏源码开发搭建技术栈和服务器配置流程

近些年各种场景小游戏开发搭建版本层出不穷,山东布谷科技拥有多年海内外小游戏源码开发经验&#xff0c;现为从事小游戏源码开发或游戏运营的朋友们详细介绍小游戏开发及服务器配置流程。 一、可以对接到app的小游戏是如何开发的 1、小游戏源码开发的需求分析&#xff1a; 明…

【Linux网络编程】传输层协议

目录 一&#xff0c;传输层的介绍 二&#xff0c;UDP协议 2-1&#xff0c;UDP的特点 2-2&#xff0c;UDP协议端格式 三&#xff0c;TCP协议 3-1&#xff0c;TCP报文格式 3-2&#xff0c;TCP三次握手 3-3&#xff0c;TCP四次挥手 3-4&#xff0c;滑动窗口 3-5&#xf…