【线上直播】SFFAI 99 期 数据扩增专题

会议简介

在计算机视觉任务中,数据扩增是一种基于较少数据、产生大量训练样本,进而提升模型性能的有效方法。传统数据扩增方法主要借助于图像域的翻转、平移、旋转等简单变换。而本期讲者王语霖提出了一种隐式语义数据扩增算法,对样本进行更为「高级」的、「语义」层面的变换,例如改变物体的背景、颜色、视角等。

在这里插入图片描述

 

讲者介绍

王语霖,清华大学自动化系2019级直博生。导师为吴澄院士和黄高助理教授。此前于北京航空航天大学自动化学院获工学学士学位。研究兴趣为深度学习模型的高效训练和推理方法。在T-PAMI、NeurIPS、ICLR等国际一流期刊、会议上以第一作者发表学术论文。

 

会议题目

图像数据的隐式语义数据扩增

 

会议摘要

我们提出了一种隐式语义数据扩增算法:ISDA,具有如下几个突出特点:

(1)与传统数据扩增方法高度互补,有效地增进扩增多样性和进一步提升性能;

(2)巧妙地利用深度神经网络长于学习线性化表征的性质,在特征空间完成扩增过程,无需训练任何辅助生成模型(如GAN等),几乎不引入任何额外计算或时间开销;

(3)直接优化无穷扩增样本期望损失的一个上界,最终形式仅为一个全新的损失函数,简单易用,便于实现;

(4)可以广泛应用于全监督、半监督图像识别、语义分割等视觉任务,在ImageNet、Cityscapes等较大规模的数据集上效果比较明显。

在这里插入图片描述

在这里插入图片描述

论文标题:Regularizing Deep Networks with Semantic Data Augmentation

论文在线阅读:https://bbs.sffai.com/d/130

 

会议亮点

1、关注语义层面的数据扩增;

2、利用特征空间的性质,对深度特征进行数据扩增;

3、从期望损失的形式出发,向大家展示了数据扩增不一定是随机化的方法,亦可以体现为一个确定的形式,例如损失函数。

 

直播时间

2021年3月21日(周日)20:00-21:00 线上直播

关注微信公众号:人工智能前沿讲习,对话框回复“SFFAI99”,获取入群二维码

注:直播地址会分享在交流群内

 

SFFAI介绍

现代科学技术高度社会化,在科学理论与技术方法上更加趋向综合与统一,为了满足人工智能不同领域研究者相互交流、彼此启发的需求,我们发起了SFFAI这个公益活动。SFFAI每周举行一期线下活动,邀请一线科研人员分享、讨论人工智能各个领域的前沿思想和最新成果,使专注于各个细分领域的研究者开拓视野、触类旁通。

SFFAI目前主要关注机器学习、计算机视觉、自然语言处理等各个人工智能垂直领域及交叉领域的前沿进展,将对线下讨论的内容进行线上传播,使后来者少踩坑,也为讲者塑造个人影响力。SFFAI还在构建人工智能领域的知识森林—AI Knowledge Forest,通过汇总各位参与者贡献的领域知识,沉淀线下分享的前沿精华,使AI Knowledge Tree枝繁叶茂,为人工智能社区做出贡献,欢迎大家关注SFFAI论坛:https://bbs.sffai.com。

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/65145.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【活动报名 | 青源Talk第3期】DenseNet发明者黄高:面向边缘设备的轻量神经网络...

活动议程 日期:12月10日(周四) 时间 主题19:00-19:05开场简介刘知远,清华大学计算机系副教授,智源青年科学家19:05-19:50《面向边缘设备的轻量神经网络》黄高,清华大学自动化系助理教授,智源青年…

不是所有图像都值 16x16 个词,可变序列长度的动态 Transformer 来了!

转自 | AI 科技评论 编辑 | 陈大鑫 最近半年,Transformer在视觉领域大获成功,其中的代表作就是谷歌的工作ViT:《An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale》。 以ViT为代表的视觉Transformer通常将所有输…

国内有哪些不错的计算机视觉团队?

来源:深度学习技术前沿 编辑:Evans 【导读】计算机视觉是当前人工智能领域的超级热门,本文为大家总结了当前国内比较优秀的计算机视觉团队信息,希望能在大家申请硕士或者博士的过程中,提供一些参考信息! 作…

圆形的CNN卷积核?华中科大清华黄高团队康奈尔提出圆形卷积,进一步提升卷积结构性能!

作者丨小马 编辑丨极市平台 写在前面 目前正常卷积的感受野大多都是一个矩形的,因为矩形更有利于储存和计算数据的方便。但是,人类视觉系统的感受野更像是一个圆形的。因此,作者就提出,能不能将CNN卷积核的感受野也变成圆形呢&a…

深入浅出的模型压缩:你一定从未见过如此通俗易懂的Slimming操作

点击上方“计算机视觉工坊”,选择“星标” 干货第一时间送达 作者丨科技猛兽 编辑丨极市平台 导读 本文首先介绍了模型压缩领域的指标含义,并通过梳理文献,介绍了模型压缩领域常用的方法。随后对Slimming这一模型压缩方法进行了详细介绍&…

Dropout技术之随机神经元与随机深度

1. 写在前面 在学习复现EfficientNet网络的时候,里面有一个MBConv模块长下面这个样子: 当然,这个结构本身并不是很新奇,从resNet开始,几乎后面很多网络,比如DenseNet, MobileNet系列&#xff0…

如何做高质量研究、写高水平论文?| 黄高、王兴刚等共话科研与论文写作

如何产生好的研究思路?如何撰写一篇高质量论文?如何从浩如烟海的论文中寻找好的科研灵感?如何通过Rebuttal为自己的文章扳回一城?导师跟学生之间怎样才能形成更好的合作关系? 在ECCV 2022中国预会议的Panel环节&#x…

智源青年科学家黄高:面向高效推理的深度网络结构设计

随着深度学习在工业界的广泛应用,人们对模型的关注不仅仅在于其预测精度,同时也对计算和存储效率提出了更高的要求。在提升模型效率的诸多手段中,神经网络结构创新始终是最为有效的方式之一。 2019年12月24日上午,智源青年科学家、…

RANet:MSDNet加强版!清华黄高团队提出分辨率自适应的高效推理网络RANet!

关注公众号,发现CV技术之美 本文分享论文『Resolution Adaptive Networks for Efficient Inference』,由清华黄高团队提出分辨率自适应的高效推理网络RANet!MSDNet加强版! 详细信息如下: 论文链接:https://…

ICLR2021 | 清华大学黄高团队:显存不够?不妨抛弃端到端训练

智源导读:本文主要介绍清华大学黄高团队被ICLR2021接收的一篇文章:Revisiting Locally Supervised Learning: an Alternative to End-to-End Training。 论文链接:https://openreview.net/forum?idfAbkE6ant2 代码链接:https://g…

清华大学黄高——图像数据的语义层扩增方法

⬆⬆⬆ 点击蓝字 关注我们 AI TIME欢迎每一位AI爱好者的加入! 2020 年 9 月 25 日,在由中国科协主办,清华大学计算机科学与技术系、AI TIME 论道承办的《2020 中国科技峰会系列活动青年科学家沙龙——人工智能学术生态与产业创新》上&#xf…

DenseNet发明者黄高:动态模型好在哪里?

智源导读:自2012年至今,计算机视觉领域蓬勃发展,各种模型不断涌现,短短 8 年时间,计算机视觉领域便发生了天翻地覆的变化。那么如何看待过往变化,当下研究又如何? 12月10日晚,在【青…

对话 DenseNet 一作黄高:做有韧劲、能抗压、不断探索未知的科研

点击上方“计算机视觉工坊”,选择“星标” 干货第一时间送达 作者丨刘冰一 来源丨极市平台 清华大学助理教授、密集连接卷积网络 (DenseNet)提出者 、计算机视觉领域一作顶会论文被引次数最高的国内学者、百万青橙奖奖金获得者..... 这些标签…

测试工程师的好日子来啦?Testin发布AI测试产品,提升易用性和自动化效率

2019年10月26日,以"AI未来"为主题的第二届NCTS中国云测试行业峰会在北京国际会议中心正式开幕。在本次大会上,Testin 总裁徐琨正式发布测试业务Testin云测的全新AI产品iTestin。作为 Testin 人工智能战略中的重要一环,iTestin 融合…

【CodingNoBorder - 07】无际软工队 - 求职岛:ALPHA 阶段测试报告

无际软工队 - 求职岛:ALPHA 阶段测试报告 项目内容这个作业属于哪个课程2022年北航敏捷软件工程这个作业的要求在哪里团队项目-Alpha阶段测试报告我们在这个课程的目标是熟悉敏捷开发的方法论,并通过实际开发产品进行实践。这个作业在哪个具体方面帮助我…

pytest测试报告Allure - 动态生成标题生成功能、添加用例失败截图

一、动态生成标题 默认 allure 报告上的测试用例标题不设置就是用例名称,其可读性不高;当结合 pytest.mark.parametrize 参数化完成数据驱动时,如标题写死,其可读性也不高。 那如果希望标题可以动态的生成,采取的方案…

❀YOLOv5学习❀图像标注工具LabelImg的下载,配置和使用。

LabelImg是图形图像注释工具。它是用Python编写的,并将Qt用于其图形界面。批注以PASCAL VOC格式(ImageNet使用的格式)另存为XML文件。此外,它还支持YOLO格式。下载这个,主要是为了YOLOv5中,做自己的数据集&…

brat事件标注平台使用教程

事件图谱首先涉及到的是事件标注,我采用的是brat事件标注平台,该平台使用的是Linux系统,因为我的电脑是windows系统, 将brat安装在了linux虚拟机(Ubuntu)上。 一.下载与安装 1.下载brat 进入brat官网brat…

OpenAI 成近期顶流团队?如何使用 OpenAI 和 Node.js 构建 AI 图像生成器?

摘要: 12月7号,知名人工智能研究机构 Open AI 在Youtub上发布视频介绍使用OpenAI 和 DALL-E 模型创建一个网络应用程序,该应用程序将根据输入的文本从头开始生成图像。https://www.youtube.com/watch?vfU4o_BKaUZE 前言💖 大家好&#xff0…

AI 自动写代码插件 Copilot(副驾驶员)

AI 自动写代码插件 Copilot 提示:Copilot单词直译过来就是副驾驶员的意思。 介绍:本质上就是基于GitHub开源的亿级别的代码,训练AI模型,自动生成代码。 就是数据量(GitHub的数据量就很大!)能够决定你AI模型精度的上…