电源电子电路设计图TOP11经典分析 - 全文

一、稳压电源

  1、3~25V电压可调稳压电路图

  此稳压电源可调范围在3.5V~25V之间任意调节,输出电流大,并采用可调稳压管式电路,从而得到满意平稳的输出电压。

  工作原理:经整流滤波后直流电压由R1提供给调整管的基极,使调整管导通,在V1导通时电压经过RP、R2使V2导通,接着V3也导通,这时V1、V2、 V3的发射极和集电极电压不再变化(其作用完全与稳压管一样)。调节RP,可得到平稳的输出电压,R1、RP、R2与R3比值决定本电路输出的电压值。

  元器件选择:变压器T选用80W~100W,输入AC220V,输出双绕组AC28V。FU1选用1A,FU2选用3A~5A。VD1、VD2选用 6A02。RP选用1W左右普通电位器,阻值为250K~330K,C1选用3300&micro($0.1464);F/35V电解电容,C2、C3选用0.1&micro($0.1464);F独石电容,C4选用 470&micro($0.1464);F/35V电解电容。R1选用180~220Ω/0.1W~1W,R2、R4、R5选用10KΩ、1/8W。V1选用2N3055($0.9828),V2选用 3DG180或2SC3953,V3选用3CG12或3CG80

  电源电子电路设计图TOP11经典分析

  2、10A3~15V稳压可调电源电路图

  无论检修电脑还是电子制作都离不开稳压电源,下面介绍一款直流电压从3V到15V连续可调的稳压电源,最大电流可达10A,该电路用了具有温度补偿特性的,高精度的标准电压源集成电路TL431($0.0625),使稳压精度更高,如果没有特殊要求,基本能满足正常维修使用,电路见下图。

  电源电子电路设计图TOP11经典分析

  其工作原理分两部分,第一部分是一路固定的5V1.5A稳压电源电路。第二部分是另一路由3至15V连续可调的高精度大电流稳压电路。第一路的电路非常简 单,由变压器次级8V交流电压通过硅桥QL1整流后的直流电压经C1电解电容滤波后,再由5V三端稳压块LM7805($0.2053)不用作任何调整就可在输出端产生固定 的5V1A稳压电源,这个电源在检修电脑板时完全可以当作内部电源使用。第二部分与普通串联型稳压电源基本相同,所不同的是使用了具有温度补偿特性的,高 精度的标准电压源集成电路TL431($0.0625),所以使电路简化,成本降低,而稳压性能却很高。图中电阻R4,稳压管TL431($0.0625),电位器R3组成一个连续可调得恒压 源,为BG2基极提供基准电压,稳压管TL431($0.0625)的稳压值连续可调,这个稳压值决定了稳压电源的最大输出电压,如果你想把可调电压范围扩大,可以改变R4 和R3的电阻值,当然变压器的次级电压也要提高。变压器的功率可根据输出电流灵活掌握,次级电压15V左右。桥式整流用的整流管QL用15-20A硅桥, 结构紧凑,中间有固定螺丝,可以直接固定在机壳的铝板上,有利散热。调整管用的是大电流NPN型金属壳硅管,由于它的发热量很大,如果机箱允许,尽量购买 大的散热片,扩大散热面积,如果不需要大电流,也可以换用功率小一点的硅管,这样可以做的体积小一些。滤波用50V4700uF电解电容C5和C7分别用 三只并联,使大电流输出更稳定,另外这个电容要买体积相对大一点的,那些体积较小的同样标注50V4700uF尽量不用,当遇到电压波动频繁,或长时间不 用,容易失效。最后再说一下电源变压器,如果没有能力自己绕制,有买不到现成的,可以买一块现成的200W以上的开关电源代替变压器,这样稳压性能还可进 一步提高,制作成本却差不太多,其它电子元件无特殊要求,安装完成后不用太大调整就可正常工作。

  二、开关电源

  1、PWM开关电源集成控制IC-UC3842($0.1656)工作原理

  UC3842($0.1656)工作原理

  下图为UC3842($0.1656) 内部框图和引脚图,UC3842($0.1656) 采用固定工作频率脉冲宽度可控调制方式,共有8 个引脚,各脚功能如下:①脚是误差放大器的输出端,外接阻容元件用于改善误差放大器的增益和频率特性;②脚是反馈电压输入端,此脚电压与误差放大器同相端 的2.5V 基准电压进行比较,产生误差电压,从而控制脉冲宽度;③脚为电流检测输入端, 当检测电压超过1V时缩小脉冲宽度使电源处于间歇工作状态;④脚为定时端,内部振荡器的工作频率由外接的阻容时间常数决 定,f=1.8/(RT×CT);⑤脚为公共地端;⑥脚为推挽输出端,内部为图腾柱式,上升、下降时间仅为50ns 驱动能力为±1A ;⑦脚是直流电源供电端,具有欠、过压锁定功能,芯片功耗为15mW;⑧脚为5V 基准电压输出端,有50mA 的负载能力。

  电源电子电路设计图TOP11经典分析

  UC3842($0.1656) 内部原理框图

  UC3842($0.1656)是一种性能优异、应用广泛、结构较简单的PWM开关电源集成控制器,由于它只有一个输出端,所以主要用于音端控制的开关电源。UC3842($0.1656) 7脚为电压输入端,其启动电压范围为16-34V。在电源启动时,VCC﹤16V,输入电压施密物比较器输出为0,此时无基准电压产生,电路不工作;当 Vcc﹥16V时输入电压施密特比较器送出高电平到5V蕨稳压器,产生5V基准电压,此电压一方面供销内部电路工作,另一方面通过⑧脚向外部提供参考电 压。一旦施密特比较器翻转为高电平(芯片开始工作以后),Vcc可以在10V-34V范围内变化而不影响电路的工作状态。当Vcc低于10V时,施密特比 较器又翻转为低电平,电路停止工作。

  当基准稳压源有5V基准电压输出时,基准电压检测逻辑比较器即达出高电平信号到输出电路。同时,振荡器将根据④脚外接Rt、Ct参数产生 f=/Rt.Ct的振荡信号,此信号一路直接加到图腾柱电路的输入端,另一路加到PWM脉宽市制RS触发器的置位端,RS型PWN脉宽调制器的R端接电流 检测比较器输出端。R端为占空调节控制端,当R电压上升时,Q端脉冲加宽,同时⑥脚送出脉宽也加宽(占空比增多);当R端电压下降时,Q端脉冲变窄,同时 ⑥脚送出脉宽也变变窄(占空比减小)。UC3842($0.1656)各点时序如图所示,只有当E点为高电平时才有信号输出 ,并且a、b点全为高电平时,d点才送出高电平,c点送出低电平,否则d点送出低电平,c点送出高电平。②脚一般接输出电压取样信号,也称反馈信号。当② 脚电压上升时,①脚电压将下降,R端电压亦随之下降,于是⑥脚脉冲变窄;反之,⑥脚脉冲变宽。③脚为电流传感端,通常在功率管的源极或发射极串入一小阻值 取样电阻,将流过开关管的电流转为电压,并将此电压引入境脚。当负载短路或其它原因引起功率管电流增加,并使取样电阻上的电压超过1V时,⑥脚就停止脉冲 输出,这样就可以有效的保护功率管不受损坏。

  电源电子电路设计图TOP11经典分析

  2、TOP224P($1.7520)构成的12V、20W开关直流稳压电源电路

  由TOP224P($1.7520)构成的 12V、20W开关直流稳压电源电路如图所示。电路中使用两片集成电路:TOP224P($1.7520)型三端单片开关电源(IC1),PC817A型线性光耦合 器 (IC2)。交流电源经过UR和Cl整流滤波后产生直流高压Ui,给高频变压器T的一次绕组供电。VDz1和VD1能将漏感产生的尖峰电压钳位到安全值, 并能衰减振铃电压。VDz1采用反向击穿电压为200V的P6KE200($0.0861)型瞬态电压抑制器,VDl选用1A/600V的UF4005($0.0747)型超快恢复二极管。二 次绕组电压通过V砬、C2、Ll和C3整流滤波,获得12V输出电压Uo。Uo值是由VDz2稳定电压Uz2、光耦中 LED的正向压降UF、R1上的压降 这三者之和来设定的。改变高频变压器的匝数比和VDz2的稳压值,还可获得其他输出电压值。R2和VDz2五还为12V输出提供一个假负载,用以提高轻载 时的负载调整率。反馈绕组电压经VD3和C4整流滤波后,供给TOP224P($1.7520)所需偏压。由R2和VDz2来调节控制端电流,通过改变输出占空比达到稳压目 的。共模扼流圈L2能减小由一次绕组接D端的高压开关波形所产生的共模泄漏电流。C7为保护电容,用于滤掉由一次、二次绕组耦合电容引起的干扰。C6可减 小由一次绕组电流的基波与谐波所产生的差模泄漏电流。C5不仅能滤除加在控制端上的尖峰电流,而且决定自启动频率,它还与R1、R3一起对控制回路进行补 偿。

  电源电子电路设计图TOP11经典分析

  三、DC-DC电源

  1、3V转+5V、+12V的电路图

  由 电池供电的便携式电子产品一般都采用低电源电压,这样可减少电池数量,达到减小产品尺寸及重量的目的,故一般常用3~5V作为工作电压,为保证电路工作的 稳定性及精度,要求采用稳压电源供电。若电路采用5V工作电压,但另需一个较高的工作电压,这往往使设计者为难。本文介绍一种采用两块升压模块组成的电路 可解决这一难题,并且只要两节电池供电。

  该电路的特点是外围元件少、尺寸小、重量轻、输出+5V、+12V都是稳定的,满足便携式电子产品的要求。+5V电源可输出60mA,+12V电源最大输出电流为5mA。

  电源电子电路设计图TOP11经典分析

  该 电路如上图所示。它由AH805升压模块及FP106($1.5500)升压模块组成。AH805是一种输入1.2~3V,输出5V的升压模块,在3V供电时可输出 100mA电流。FP106($1.5500)是贴片式升压模块,输入4~6V,输出固定电压为29±1V,输出电流可达40mA,AH805及FP106($1.5500)都是一个电平控制 的关闭电源控制端。

  两节1.5V碱性电池输出的3V电压输入AH805,AH805输出+5V电压,其一路作5V输出,另一路输入FP106($1.5500)使其产生28~30V电压,经稳压管稳压后输出+12V电压。从图中可以看出,只要改变稳压管的稳压值,即可获得不同的输出电压,使用十分灵活。FP106($1.5500)的第⑤脚为控制电源关闭端,在关闭电源时,耗电几乎为零,当第 ⑤脚加高电平》2.5V时,电源导通;当第⑤脚加低电平《0.4V时,电源被关闭。可以用电路来控制或手动控制,若不需控制时,第⑤脚与第 ⑧脚连接。

  2、用MC34063($0.1626)做3.6V电转9V电路图

  工作状态:

  无负载:输入:3.65V、18uA(相当600mAH的电池待机三年多)

  有负载:输出:9.88V、50.2mA,输入:3.65V、186.7mA,效率为72%

  工作原理:

  无负载时,IC的 6脚没有电,停止工作,输入端3.65V工作电流只有18uA(相当600mAH的电池待机三年多)!当有负载时(Q1有Ieb电流),8550的EC极导通,IC得电工作。IC是否工作是由是否有负载决定的,就相当一个电池。用IC做电压转换效率高,输出稳定!这个电路加点改进,增加功率可以做“不需开关的4.2V转5V移动电源”。可以用个电池盒做手机的后备电源!

  电路图

  电源电子电路设计图TOP11经典分析

  我的电感是用0.3mm的线在1cm的工字磁芯上绕约30匝。我觉得这磁芯用得偏大了,他的空间还没有绕上一半。

  四、充电电路

  1、lm358($0.0737)碱性电池充电器电路图

  碱性电池能否充电的问题,有两种不同的说法。有的说可以充,效果非常好。有的说绝对不能充,电池说明提示了会有爆炸的危险。事实上,碱性电池确可充电,充电次数一般为30-50次左右。实际上是由于在充电方法上的掌握,导致了截然不同的两种后果。首先 ,碱性电池可以充电是毋庸置疑的,同时,在电池的说明中,都提到碱性电池不可充电,充电可能导致爆炸。这也是没错的,但是注意这里的用词是“可能”导致爆 炸。你也可以理解为厂家的一种免责性的自我保护声明。碱性电池充电的关键是温度。只要能做到对电池充电时不出现高温,就可以顺利地完成充电过程,正确的充 电方法要求有几点:

  1.小电流50MA

  2.不过充1.7V,不过放1.3V

  一些人尝试充电实践后,斩钉截铁地说不能充电,之所以出现充不进电、用电时间短、漏液、爆炸等问题,多数是充电器的问题,如果充电器充电电流太大,远超过 50ma,如一些快速充电器充电电流在200ma以上,直接的后果是电池温度很高,摸上去烫手,轻则会漏液,严重的就会爆炸。有的人使用镍氢充电电池充电器来充,低档的充电器没有自动停充功能,长时间的充电导致电池过充也会出现漏液和爆炸。好一点的充电器有自动停充功能,但停充电 压一般设定为镍氢充电电池的1.42V,而碱性电池充满电压约为1.7V。因此,电压太低,感觉上就是充不进电,用电时间短,没什么效果。再有就是电池不 过放指的是不要等到电池完全没电再充电,这样操作,再好的电池也就能充三、五次,且效果差。一般建议用南孚碱性电池电压不低于1.3V。所以,你如果打算对碱性电池充电,必须要有一个合格的充电器,充电电流50ma左右,充电截止电压1.7V左右。看看你家的充电器吧。市面上有卖碱性电池专用充电器的,所谓专利产品。实际上就是充电电压1.7V电流50ma的简单电路。利用手边现有的零件lm358($0.0737)TL431($0.0625),我做了个简单电路,截止电压1.67V自动停充,成本两元而已。供感兴趣的朋友参考。

  相关说明:

  碱锰充电电池:是在碱性锌锰电池的基础上发展起来的,由于应用了无汞化的锌粉及新型添加剂,故又称为无汞碱锰电池。这种电池在不改变原碱性电池放电特性的同时,又能充电使用几十次到几百次,比较经济实惠。碱性锌锰电池简称碱锰电池,它是在1882年研制成功,1912年就已开发,到了1949年才投产问世。人们发现,当用KOH电解质溶液代替NH4Cl做电解质时,无论是电解质还是结构上都有较大变化,电池的比能量和放电电流都能得到显著的提高。

  电源电子电路设计图TOP11经典分析

  它的特点:

  1.开路电压为1.5V;2.工作温度范围宽在-20℃~60℃之间,适于高寒地区使用;3.大电流连续放电其容量是酸性锌锰电池的5倍左右;4.它的低温放电性能也很好。充电次数在30次以内,一般10-20次,需要特别充电器,极为容易丧失充电能力。

  2、2.75W中功率USB充电器电路图

  该设计采用了Power Integrations的LinkSwitch系列产品LNK613DG($0.5400)。这种设计非常适合手机或类似的USB充电器应用,包括手机电池充电器、USB 充电器或任何有恒压/恒流特性要求的应用。在电路中,二极管D1至 D4对AC输入进行整流,电容C1和C2对DC进行滤波。L1、C1和C2组成一个π型滤波器,对差模传导EMI噪声进行衰减。这些与Power Integrations的变压器E-sheild?技术相结合,使本设计能以充足的裕量轻松满足EN55022 B级传导EMI要求,且无需Y电容。防火、可熔、绕线式电阻RF1提供严重故障保护,并可限制启动期间产生的浪涌电流。

  电源电子电路设计图TOP11经典分析

  图 1显示U1通过可选偏置电源实现供电,这样可以将空载功耗降低到40 mW以下。旁路电容C4的值决定电缆压降补偿的数量。1μF的值对应于对一条0.3 Ω、24 AWG USB输出电缆的补偿。(10 μF电容对0.49 Ω、26 AWG USB输出电缆进行补偿。)

  在恒压阶段,输出电压通过开关控制进行调节。输出电压通过跳过开关周期得以维持。通过调整使能与禁止周期的比例,可以维持稳压。这也可以使转换器的效率在整 个负载范围内得到优化。轻载(涓流充电)条件下,还会降低电流限流点以减小变压器磁通密度,进而降低音频噪音和开关损耗。随着负载电流的增大,电流限流点 也将升高,跳过的周期也越来越少。当不再跳过任何开关周期时(达到最大功率点),LinkSwitch-II内的控制器将切换到恒流模式。需要进一步提高负载电流时,输出电压将会随之下降。输出电压的下降反映在FB引脚电压上。作为对FB引脚电压下降的响应,开关频率将线性下降,从而实现恒流输出。D5、R2、R3和C3组成RCD-R箝位电路,用于限制漏感引起的漏极电压尖峰。电阻R3拥有相对较大的值,用于避免漏感引起的漏极电压波形振荡,这样可以防止关断期间的过度振荡,从而降低传导EMI。

  二 极管D7对次级进行整流,C7对其进行滤波。C6和R7可以共同限制D7上的瞬态电压尖峰,并降低传导及辐射EMI。电阻R8和齐纳二极管 VR1形成一个输出假负载,可以确保空载时的输出电压处于可接受的限制范围内,并确保充电器从AC市电断开时电池不会完全放电。反馈电阻R5和R6设定最 大工作频率与恒压阶段的输出电压。

  五、恒流源

  1、浅谈如何设计三线制恒流源驱动电路

  恒流源驱动电路负责驱动温度传感器Pt1000($5.8752),将其感知的随温度变化的电阻信号转换成可测量的电压信号。本系统中,所需恒流源要具有输出电流恒定,温度稳 定性好,输出电阻很大,输出电流小于0.5 mA(Pt1000($5.8752)无自热效应的上限),负载一端接地,输出电流极性可改变等特点。由于温度对集成运放参数影响不如对晶体管或场效应管参数影响显著,由集成运放构成的恒流源具有稳定性更好、恒流性能更高的优点。尤其在负载一端需要接地的场 合,获得了广泛应用。所以采用图2所示的双运放恒流源。其中放大器UA1构成加法器,UA2构成跟随器,UA1、UA2均选用低噪声、低失调、高开环增益 双极性运算放大器OP07。

  电源电子电路设计图TOP11经典分析

  由此可见该双运放恒流源具有以下显著特点:

  1)负载可接地;2)当运放为双电源供电时,输出电流为双极性;3)恒定电流大小通过改变输入参考基准VREF或调整参考电阻Rref0的大小来实现,很容易得到稳定的小电流和补偿校准。由于电阻的失配,参考电阻Rref0的两端电压将会受到其驱动负载的端电压Vb的影响。同时由于是恒流源,Vb肯定会随负载的变化而变化,从而就会影响恒流 源的稳定性。显然这对高精度的恒流源是不能接受的。所以R1,R2,R3,R4这4个电阻的选取原则是失配要尽量的小,且每对电阻的失配大小方向要一致。 实际中,可以对大量同一批次的精密电阻进行筛选,选出其中阻值接近的4个电阻。

  2、开关电源式高耐压恒流源电路图

  电源电子电路设计图TOP11经典分析

  研制仪器需要一个能在0到3兆欧姆电阻上产生1MA电流的恒流源,用UC3845($0.1656)结合12V蓄电池设计了一个,变压器采用彩色电视机高压包,其中L1用漆包 线在原高压包磁心上绕24匝,L3借助原来高压包的一个线圈,L2借助高压包的高压部分。L3和LM393($0.0737)构成限压电路,限制输出电压过高,调节R10 可以调节开路输出电压。

 

声明:仅供个人学习使用

参考文档:http://www.elecfans.com/dianlutu/dianyuandianlu/20150303365166_a.html

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/69650.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

原理图-电源电路设计

电源电路是指提供给用电设备电力供应的电源部分的电路设计,使用的电路形式和特点。既有交流电源也有直流电源 电源电路一般可分为开关电源电路,稳压电源电路,稳流电源电路,功率电源电路,逆变电源电路,DC-D…

【硬件设计】开关电路

文章目录 1. 简介1.1 继电器概述1.2 光耦概述1.3 开关电路概述1.3.1 继电器开关电路概述1.3.2 光耦开关电路概述1.3.3 继电器和光耦开关电路概述1.3.4 三者比较 2. 继电器SDR-C5VDC-SL-A2.1 继电器SDR-C5VDC-SL-A特性2.2 继电器SDR-C5VDC-SL-A接线图及原理2.3 继电器SDR-C5VDC-…

【电路设计】Bandgap Voltage Curreat Reference

一、基本概念 The current or the voltage that is impedence with temperature and supply voltage, and also insensitivity with the fabrication process, is called as udge or current reference, usually knoun as PVT stablity 。 带隙基准直接来源于硅的能带隙,因此它…

手绘图说电子元器件-集成电路

集成电路是高度集成化的电子器件,具有集成度高、功能完整、可靠性好、体积小、重量轻、功耗低的特点,已成为现代电子技术中不可或缺的核心器件。 集成电路可分为模拟集成电路和数字集成电路两大类,包括集成运放、时基集成电路、集成稳压器、…

电子线路设计技巧6:Boost电路的参数设计

本文以实例方式介绍Boost电路的参数设计方法。项目需求:12V升压至50V,功率35W。 先看示例电路图,如下图所示。 在进行具体的参数计算之前,我们先简要的分析一下Boost电路的工作原理。 1、我们假设,C3和C4的容值相对于…

模拟IC设计——简单放大器的交流小信号仿真

仿真工具:Cadence virtuoso6.17 仿真工艺:simc18mmrf 仿真实例:简单放大器交流小信号分析 一、交流小信号分析 上一节: MOS管IV特性仿真 “simc18mmrf”中调用NMOS n33,按键盘中的Q键,在属性lu/5u;重复上述操作&…

交流信号采集电路设计(超详细分析)

交流信号采集电路设计(超详细分析) 背景:我当时也有疑问,单片机ADC不是只能采集直流信号么,那么有哪些办法可以转换后给单片机。现在弄懂了些皮毛,和大家分享。 一、交流变压取样 对于AC220V,…

基于stc89c52电子钟综合设计

1、基本功能: 实现时间自动显示和音响报时 ① 按实时时间显示时分秒 ② 每隔60秒自动短响一声 ③ 按日期显示年-月日 ④ 每隔60分连续响多声,几点响几声 ⑤ 可设置每天4次闹钟功能 ⑥ 设有调整日期、时间和止闹按钮 ⑦ 有…

模电课程设计——信号发生器

1.1 设计题目及要求 设计一个供电电源为交流220V、50Hz的占空比可调的矩形波、三角波信号发生器。主要电路指标要求波形频率为1KHz~10KHz,波形幅值小于12V,其它指标要求尽可能多的信号多样性。本设计是设计一个完整的信号发生器,单元电路必须…

AD8232芯片电路Auto Designer设计与构建

一、实验目的 1、加深对于普通仪表放大器的理解,同时也由此延伸到其它的放大器的理解; 2、学习、锻炼对于电子设计软件Altium Designer的运用——包含一个芯片的原理图、PCB设计、封装的添加,及整体电路板的原理图、PCB设计; 3、…

电子线路设计技巧4:ATT7022E电流采样电路

本篇日志介绍ATT7022E电流采样电路,ATT7022E电压采样电路都是通过电流互感器完成,可以分为2种:差分输入和单端输入。在条件允许的情况下,我们尽量采用差分输入方式构建电流采样电路,因为这样可以得到更高的精度和抗干扰…

(保姆级教学)ADS设计高频微波整流电路之二——版图联合仿真

目录 元件复制 版图生成 版图修正 EM设置 联合仿真 过孔保留 对于已经完成原理图仿真的微波电路而言,一块能够展现实际微带线形状的版图(Layout)能帮助我们进行实物图的设计与理解。 元件复制 由于在整流电路中,版图文件仅…

射频电子电路设计图集---研读

TOP1 射频低噪声放大器电路 射频LNA设计要求:低噪声放大器(LNA)作为射频信号传输链路的第一级,它的噪声系数特性决定了整个射频电路前端的噪声性能,因此作为高性能射频接收电路的第一级LNA的设计必须满足:&…

模拟电路设计(37)---集成化开关电源变换器

集成化开关电源变换器 在实际应用中,经常需要多种供电电源,并且需要的电流通常在几百毫安以内,这样的电源若采用体积庞大的DC-DC变换模块是不合适的,一方面成本较高,另外需要较大的PCB面积。 因此,小体积…

信号发生器-电路与电子技术课程设计

目录 1 设计任务与要求1.1 设计任务1.2 设计要求 2 方案设计与论证2.1 方案设计2.2 论证 3 信号发生器设计与计算3.1 信号发生器设计3.2 方波振荡电路图3.3 三角波振荡电路图3.4 参数计算 4 总原理图及元器件清单4.1 总原理图4.2 元件清单 5 性能测试与分析5.1 测试步骤5.2 记录…

电子电路设计

反馈 1、反馈的概念 将放大电路输出量或输出量的一部分,通过一定方式,反送到放大电路的输入回路中 2、反馈的分类及其判定方式 反馈的分类: 正反馈:反馈信号增强了 输入信号;有利于增大放大倍数 负反馈&#xff…

一个高频开关电路设计与仿真

本电路直接使用ADS自带的PIN管进行设计。 电路图如下: 本电路使用1GHz为测试频率, 使用的时候,端口1 接天线, 端口2接接收, 端口3接发射; 当SRC1为3V, SRC2为0V时,端口1和端口2导通…

手机还能做电路仿真啊!电子电路兴趣爱好者福音!

不知道大家喜不喜欢平时动手做点小玩具或者一些小的电子电路方面的手工。比如制做一个音频功率放大器(音响),数码管时钟,电磁炮之类的。霸哥偶尔也会动手做一些,不过因为专业原因我甚至连专业的电路软件都不会用&#…

电子电路讨论 ---电源部分的讨论

今天有些时间,和大家一起聊一下电源这块的设计和需要注意的点,今天我们讨论的是低压电源部分!(22V以下) 在我们接到上级领导或者是客户需求的时候,我们需要切实的了解到客户产品供电类型,无外乎…

有人靠着ChatGPT已经实现了月入5w+,而大部分人还不知道他是什么

大家好,我是小武,一个靠着做兼职以及工资做到了自己全款买房买车,目前就职于鹅厂。 那么我是靠什么赚到月入2w的呢?是靠最近很火的ChatGPT 我其实接触ChatGPT也是比较晚的,大概在今年的2月份左右,那会其实很…