SQL编译优化原理

最近在团队的OLAP引擎上做了一些SQL编译优化的工作,整理到了语雀上,也顺便发在博客上了。SQL编译优化理论并不复杂,只需要掌握一些关系代数的基础就比较好理解;比较困难的在于reorder算法部分。

文章目录

  • 基础概念
    • 关系代数等价
  • join等价规则
    • 基数
    • join算法的成本
    • 查询问题的分类
    • 连接树的可能数量(搜索空间)
    • 查询图、join树和问题复杂度
  • Calcite概念
  • cascade/volcano
  • Calcite volcano递归优化器实现
  • Join reorder
    • 基于连接次序优化的动态规划算法
    • IKKBZ算法
    • bushy-tree
    • ASI
    • 归一化
  • Calcite实践
    • MultiJoinOptimizeBushyRule
  • Join 算法选择
  • 关联子查询优化
    • 为什么要消除关联子查询?
    • 基本消除规则
    • project和filter去关联化
    • Aggregate的去关联化
    • 集合运算的去关联化

基础概念

关系代数等价

参考《数据库系统概念》第七版
下面是第六版
在这里插入图片描述
在这里插入图片描述
注意自然连接和θ连接的交换律不能用于外连接

join等价规则

https://www.comp.nus.edu.sg/~chancy/sigmod18-reorder.pdf
在这里插入图片描述

在这里插入图片描述

基数

基数(cardinality)表示不同值的数量
在这里插入图片描述

join算法的成本

从上到下依次为嵌套循环连接、hash连接、排序合并连接
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

ASI(相邻序列交换)

查询问题的分类

按照查询图:chain、cycle、star、clique
按照查询树结构:left-deep、zig-zag、bushy tree
按照join结构:有没有cross product
按照成本函数:有没有ASI属性

连接树的可能数量(搜索空间)

在这里插入图片描述

查询图、join树和问题复杂度

在这里插入图片描述
在这里插入图片描述

Calcite概念

RelNode:plan/subplan
relset:关系表达式等价的plan集合
relsubset :关系表达式和物理属性等价的plan集合
transformationRule:logical plan变化的规则集合
converterplan:将lp转化为pp的转化规则
RelOptRule :优化规则
RelOptNode 接口, 它代表的是能被 planner 操作的 expression node
statement:语句
reltrait 关系表达式特征
RelTraitDef 用于定义一类 RelTrait
RelTrait RelTrait是一个表示查询计划特征的抽象类。它用于描述查询计划的一些特性,是对应 TraitDef 的具体实例
Convention 是一种 RelTrait 用于表示 Rel 的调用约定(calling convention)
rexnode 行表达式
schema:逻辑模型
Program:一个SQL查询解析和优化的过程集合,可以将多个子过程组合在一起,以便进行SQL查询的解析和优化

cascade/volcano

volcano是top-down的模块化可剪枝sql优化模型。
volcano生成两个代数模型:logical and the physical algebras 分别优化lp和pp(pp主要选择执行算法)
一个volcano优化器必须提供如下部分:
(1) a set of logical operators,
(2) algebraic transformation rules, possibly with condition code,
(3) a set of algorithms and enforcers,
(4) implementation rules, possibly with condition code,
(5) an ADT “cost” with functions for basic arithmetic and comparison,
(6) an ADT “logical properties,”
(7) an ADT “physical property vector” including comparisons functions (equality and cover),
(8) an applicability function for each algorithm and enforcer,
(9) a cost function for each algorithm and enforcer,
(10) a property function for each operator, algorithm, and enf
volcano使用backward chaining的方式,只探索实际参与更大表达式的子查询和计划。这种方法可以避免对无关的子查询和计划进行搜索,从而提高查询优化的效率。

Calcite volcano递归优化器实现

RuleQueue 是一个优先队列,包含当前所有可行的 RuleMatch,findBestExpr() 时每次循环中我们从中取出优先级最高的并 apply,再根据 apply 的结果更新队列……如此往复,直到满足终止条件。
RuleQueue并没有使用大顶堆,仅仅保存了importance最大的节点。
我们想象我们现在有一组relnode,匹配上了很多RuleMatch,怎么决定先进行哪个match呢?
RuleMatch的importance决定了先进行哪个match,rulematch的importance定义为以下两个中较大的一个:

  1. 输入的 RelSubset 的 importance
  2. 输出的 RelSubset 的 importance
    RelSubset的importance又该如何定义?importance 定义为以下两个中比较大的一个:
    ● 该 RelSubset 本身的真实 importance
    ● 逻辑上相等的(即位于同一个 RelSet 中)任意一个 RelSubset 的真实 importance 除以 2
    真实importance的计算规则如下:
    在这里插入图片描述
    在这里插入图片描述

Join reorder

大部分的算法基于connectivity-heuristic,也就是说,只考虑equl-join

基于连接次序优化的动态规划算法

对于假设所有的连接都是自然连接的n个关系的集合,动态规划算法的复杂度为3^n
归并连接可以产生有序的结果,对于后面的排序可能有用(interesting sort order)。
目前我们用spark的连接算法,这条暂时没用。

IKKBZ算法

left-deep tree和bushy tree
left-deep tree 左深树
连接运算符的右侧输入都是具体关系,右子树必和左子树的节点之一有共享谓词。

左深树适合一般场景的优化。System R优化器只考虑左深树的优化,时间代价是n!,加入动态规划后,可以在n*2^n时间内找到最佳连接次序。

bushy-tree

适合多路连接和并行优化,但是很复杂。
不引入交叉乘的充要条件在于给定关系的父级必须已经得到。

ASI

简单来说就是等价谓词替换原则
定义rank函数:
在这里插入图片描述

成本函数
谓词的选择性指的是谓词对查询结果的过滤能力
对于join来说可以有如下定义:
在这里插入图片描述
在这里插入图片描述

我们将查询图视为一个有根树,我们说H的选择性指的是F和H之间的选择性。
行数和选择性之间则有如下关系(行数*选择性):
在这里插入图片描述
在这里插入图片描述

成本函数定义如下:
在这里插入图片描述

我们可以根据成本函数定义rank函数:
在这里插入图片描述

下面是对于ASI的证明:
在这里插入图片描述
在这里插入图片描述

归一化

在这里插入图片描述

Calcite实践

MultiJoinOptimizeBushyRule

第一部分进行初始化,unusedEdges存放join过滤条件(两个relnode之间)

final MultiJoin multiJoinRel = call.rel(0);final RexBuilder rexBuilder = multiJoinRel.getCluster().getRexBuilder();final RelBuilder relBuilder = call.builder();final RelMetadataQuery mq = call.getMetadataQuery();final LoptMultiJoin multiJoin = new LoptMultiJoin(multiJoinRel);final List<Vertex> vertexes = new ArrayList<>();int x = 0;for (int i = 0; i < multiJoin.getNumJoinFactors(); i++) {final RelNode rel = multiJoin.getJoinFactor(i);double cost = mq.getRowCount(rel);vertexes.add(new LeafVertex(i, rel, cost, x));x += rel.getRowType().getFieldCount();}assert x == multiJoin.getNumTotalFields();final List<Edge> unusedEdges = new ArrayList<>();for (RexNode node : multiJoin.getJoinFilters()) {unusedEdges.add(multiJoin.createEdge(node));}

第二步选出成本(此处就是行数)差异最大的过滤条件
选一个行数较小的vertex作为majorFactor,另一个作为minorFactor

    // Comparator that chooses the best edge. A "good edge" is one that has// a large difference in the number of rows on LHS and RHS.final Comparator<LoptMultiJoin.Edge> edgeComparator =new Comparator<LoptMultiJoin.Edge>() {@Override public int compare(LoptMultiJoin.Edge e0, LoptMultiJoin.Edge e1) {return Double.compare(rowCountDiff(e0), rowCountDiff(e1));}private double rowCountDiff(LoptMultiJoin.Edge edge) {assert edge.factors.cardinality() == 2 : edge.factors;final int factor0 = edge.factors.nextSetBit(0);final int factor1 = edge.factors.nextSetBit(factor0 + 1);return Math.abs(vertexes.get(factor0).cost- vertexes.get(factor1).cost);}};final List<Edge> usedEdges = new ArrayList<>();for (;;) {final int edgeOrdinal = chooseBestEdge(unusedEdges, edgeComparator);if (pw != null) {trace(vertexes, unusedEdges, usedEdges, edgeOrdinal, pw);}final int[] factors;if (edgeOrdinal == -1) {// No more edges. Are there any un-joined vertexes?final Vertex lastVertex = Util.last(vertexes);final int z = lastVertex.factors.previousClearBit(lastVertex.id - 1);if (z < 0) {break;}factors = new int[] {z, lastVertex.id};} else {final LoptMultiJoin.Edge bestEdge = unusedEdges.get(edgeOrdinal);// For now, assume that the edge is between precisely two factors.// 1-factor conditions have probably been pushed down,// and 3-or-more-factor conditions are advanced. (TODO:)// Therefore, for now, the factors that are merged are exactly the// factors on this edge.assert bestEdge.factors.cardinality() == 2;factors = bestEdge.factors.toArray();}// Determine which factor is to be on the LHS of the join.final int majorFactor;final int minorFactor;if (vertexes.get(factors[0]).cost <= vertexes.get(factors[1]).cost) {majorFactor = factors[0];minorFactor = factors[1];} else {majorFactor = factors[1];minorFactor = factors[0];}final Vertex majorVertex = vertexes.get(majorFactor);final Vertex minorVertex = vertexes.get(minorFactor);

遍历unusedEdges,加入newFactors,对之前选出的majorVertex和minorVertex进行归一化并且加入vertexes

      // Find the join conditions. All conditions whose factors are now all in// the join can now be used.final int v = vertexes.size();final ImmutableBitSet newFactors =majorVertex.factors.rebuild().addAll(minorVertex.factors).set(v).build();final List<RexNode> conditions = new ArrayList<>();final Iterator<LoptMultiJoin.Edge> edgeIterator = unusedEdges.iterator();while (edgeIterator.hasNext()) {LoptMultiJoin.Edge edge = edgeIterator.next();if (newFactors.contains(edge.factors)) {conditions.add(edge.condition);edgeIterator.remove();usedEdges.add(edge);}}double cost =majorVertex.cost* minorVertex.cost* RelMdUtil.guessSelectivity(RexUtil.composeConjunction(rexBuilder, conditions));final Vertex newVertex =new JoinVertex(v, majorFactor, minorFactor, newFactors,cost, ImmutableList.copyOf(conditions));vertexes.add(newVertex);

归一化之后进行选择性的重新计算,之后进入下一轮

// Re-compute selectivity of edges above the one just chosen.// Suppose that we just chose the edge between "product" (10k rows) and// "product_class" (10 rows).// Both of those vertices are now replaced by a new vertex "P-PC".// This vertex has fewer rows (1k rows) -- a fact that is critical to// decisions made later. (Hence "greedy" algorithm not "simple".)// The adjacent edges are modified.final ImmutableBitSet merged =ImmutableBitSet.of(minorFactor, majorFactor);for (int i = 0; i < unusedEdges.size(); i++) {final LoptMultiJoin.Edge edge = unusedEdges.get(i);if (edge.factors.intersects(merged)) {ImmutableBitSet newEdgeFactors =edge.factors.rebuild().removeAll(newFactors).set(v).build();assert newEdgeFactors.cardinality() == 2;final LoptMultiJoin.Edge newEdge =new LoptMultiJoin.Edge(edge.condition, newEdgeFactors,edge.columns);unusedEdges.set(i, newEdge);}}

最后一段,根据新的vertexes次序建立relnode节点

// We have a winner!
List<Pair<RelNode, TargetMapping>> relNodes = new ArrayList<>();
for (Vertex vertex : vertexes) {if (vertex instanceof LeafVertex) {LeafVertex leafVertex = (LeafVertex) vertex;final Mappings.TargetMapping mapping =Mappings.offsetSource(Mappings.createIdentity(leafVertex.rel.getRowType().getFieldCount()),leafVertex.fieldOffset,multiJoin.getNumTotalFields());relNodes.add(Pair.of(leafVertex.rel, mapping));} else {JoinVertex joinVertex = (JoinVertex) vertex;final Pair<RelNode, Mappings.TargetMapping> leftPair =relNodes.get(joinVertex.leftFactor);RelNode left = leftPair.left;final Mappings.TargetMapping leftMapping = leftPair.right;final Pair<RelNode, Mappings.TargetMapping> rightPair =relNodes.get(joinVertex.rightFactor);RelNode right = rightPair.left;final Mappings.TargetMapping rightMapping = rightPair.right;final Mappings.TargetMapping mapping =Mappings.merge(leftMapping,Mappings.offsetTarget(rightMapping,left.getRowType().getFieldCount()));if (pw != null) {pw.println("left: " + leftMapping);pw.println("right: " + rightMapping);pw.println("combined: " + mapping);pw.println();}final RexVisitor<RexNode> shuttle =new RexPermuteInputsShuttle(mapping, left, right);final RexNode condition =RexUtil.composeConjunction(rexBuilder, joinVertex.conditions);final RelNode join = relBuilder.push(left).push(right).join(JoinRelType.INNER, condition.accept(shuttle)).build();relNodes.add(Pair.of(join, mapping));}if (pw != null) {pw.println(Util.last(relNodes));}

Join 算法选择

关联子查询优化

我们将连接外部查询和子查询的算子叫做CorrelatedJoin(也被称之为lateral join, dependent join、apply算子等等。它的左子树我们称之为外部查询(input),右子树称之为子查询(subquery)。
在这里插入图片描述
在这里插入图片描述

注:bag语义,允许元素重复出现,和set语义正交

为什么要消除关联子查询?

在这里插入图片描述

CorrelatedJoin这个算子打破了以往对逻辑树自上而下的执行模式。普通的逻辑树都是从叶子节点往根结点执行的,但是CorreltedJoin的右子树会被带入左子树的行的值反复的执行。

基本消除规则

如果 Apply 的右边不包含来自左边的参数(或者只包含filter参数),那它就和直接 Join 是等价的
在这里插入图片描述
在这里插入图片描述

project和filter去关联化

尽可能把 Apply 往下推、把 Apply 下面的算子向上提。
在这里插入图片描述
在这里插入图片描述

Aggregate的去关联化

在这里插入图片描述

SELECT c_custkey
FROM CUSTOMER
WHERE 1000000 < (SELECT SUM(o_totalprice)FROM ORDERSWHERE o_custkey = c_custkey
)
// 等价于
select sum(p_price) > 1000000 from CUSTOMER.o_custkey left join ORDERS.c_custkey 
on CUSTOMER.o_custkey = ORDERS.c_custkey group by ORDERS.c_custkey

在这里插入图片描述

集合运算的去关联化

在这里插入图片描述
在这里插入图片描述

这一组规则很少能派上用场。在 TPC-H 的 Schema 下甚至很难写出一个带有 Union All 的、有意义的子查询。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/74162.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

python-网络爬虫.BS4

BS4 Beautiful Soup 是一个可以从HTML或XML文件中提取数据的Python库&#xff0c; 它能够通过你喜欢的转换器实现惯用的文档导航、查找、修改文档的方 式。 Beautiful Soup 4 官方文档&#xff1a;https://www.crummy.com/software/BeautifulSoup/bs4/doc.zh/ 帮助手册&…

【element-ui】form表单初始化页面如何取消自动校验rules

问题描述&#xff1a;elementUI表单提交页面&#xff0c;初始化页面是获取接口数据&#xff0c;给form赋值&#xff0c;但是有时候这些会是空值情况&#xff0c;如果是空值&#xff0c;再给form表单赋值的话&#xff0c;页面初始化时候进行rules校验会不通过&#xff0c;此时前…

在excel中整理sql语句

数据准备 CREATE TABLE t_test (id varchar(32) NOT NULL,title varchar(255) DEFAULT NULL,date datetime DEFAULT NULL ) ENGINEInnoDB DEFAULT CHARSETutf8mb4; INSERT INTO t_test VALUES (87896cf20b5a4043b841351c2fd9271f,张三1,2023/6/8 14:06); INSERT INTO t_test …

单元测试之 - Spring框架提供的单元/集成测试注解

Spring框架提供了很多注解来辅助完成单元测试和集成测试(备注&#xff1a;这里的集成测试指容器内部的集成测试&#xff0c;非系统间的集成测试)&#xff0c;先看看Spring框架提供了哪些注解以及对应的作用。RunWith(SpringRunner.class) / ExtendWith(SpringExtension.class)&…

python与深度学习(十一):CNN和猫狗大战

目录 1. 说明2. 猫狗大战2.1 导入相关库2.2 建立模型2.3 模型编译2.4 数据生成器2.5 模型训练2.6 模型保存2.7 模型训练结果的可视化 3. 猫狗大战的CNN模型可视化结果图4. 完整代码5. 猫狗大战的迁移学习 1. 说明 本篇文章是CNN的另外一个例子&#xff0c;猫狗大战&#xff0c…

风辞远的科技茶屋:来自未来的信号枪

很久之前&#xff0c;有位朋友问我&#xff0c;现在科技资讯这么发达了&#xff0c;你们还写啊写做什么呢&#xff1f; 我是这么看的。最终能够凝结为资讯的那个新闻点&#xff0c;其实是一系列事情最终得出的结果&#xff0c;而这个结果又会带来更多新的结果。其中这些“得出”…

基于改进粒子群算法的混合储能系统容量优化(Matlab代码实现)

目录 &#x1f4a5;1 概述 &#x1f4da;2 运行结果 &#x1f389;3 文献来源 &#x1f308;4 Matlab代码及文章讲解 ​ &#x1f4a5;1 概述 摘要: 为了调高风光互补发电储能系统的经济性&#xff0c;减少其运行费用&#xff0c;研究风光互补发电储能系统的容量优化配置模型&…

Nginx配置WebSocket反向代理

1、WebSocket协议 ​ WebSocket协议相比较于HTTP协议成功握手后可以多次进行通讯&#xff0c;直到连接被关闭。但是WebSocket中的握手和HTTP中的握手兼容&#xff0c;它使用HTTP中的Upgrade协议头将连接从HTTP升级到WebSocket。这使得WebSocket程序可以更容易的使用现已存在的…

云曦暑期学习第三周——ctfshow--php特性(89-104)

目录 web89 preg_match函数 、数组 web90 intval()函数、强比较 web91 正则修饰符 web92 intval()函数、弱比较 web93 八进制、小数点 web94 strpos() 函数、小数点 web95 小数点 web96 highlight_file() 下的目录路径 web97 数组 web98 三目运算符 web9…

iOS开发-NotificationServiceExtension实现实时音视频呼叫通知响铃与震动

iOS开发-NotificationServiceExtension实现实时音视频呼叫通知响铃与震动 在之前的开发中&#xff0c;遇到了实时音视频呼叫通知&#xff0c;当App未打开或者App在后台时候&#xff0c;需要通知到用户&#xff0c;用户点击通知栏后是否接入实时音视频的视频或者音频通话。 在…

深度学习技巧应用24-深度学习手撕代码与训练流程的联系记忆方法

大家好,我是微学AI,今天给大家介绍一下深度学习技巧应用24-深度学习手撕代码与训练流程的联系记忆方法,大家都知道深度学习模型训练过程是个复杂的过程,这个过程包括数据的收集,数据的处理,模型的搭建,优化器的选择,损失函数的选择,模型训练,模型评估等步骤,其中缺少…

1. CUDA中的grid和block

1. CUDA中的grid和block基本的理解 Kernel: Kernel不是CPU&#xff0c;而是在GPU上运行的特殊函数。你可以把Kernel想象成GPU上并行执行的任务。当你从主机&#xff08;CPU&#xff09;调用Kernel时&#xff0c;它在GPU上启动&#xff0c;并在许多线程上并行运行。 Grid: 当你…

Android 之 MediaPlayer 播放音频与视频

本节引言&#xff1a; 本节带来的是Android多媒体中的——MediaPlayer&#xff0c;我们可以通过这个API来播放音频和视频 该类是Androd多媒体框架中的一个重要组件&#xff0c;通过该类&#xff0c;我们可以以最小的步骤来获取&#xff0c;解码 和播放音视频。它支持三种不同的…

Android 14重要更新预览

Android 14重要更新预览 国际化 Android 14 在 Android 13 的基础上进一步扩展了按应用设定语言功能&#xff0c;提供了一些额外的功能&#xff1a; 自动生成应用的 localeConfig&#xff1a;从 Android Studio Giraffe Canary 7 和 AGP 8.1.0-alpha07 开始&#xff0c;您可以…

分布式限流方案及实现

优质博文&#xff1a;IT-BLOG-CN 一、限流的作用和意义 限流是对高并发访问进行限制&#xff0c;限速的过程。通过限流来限制资源&#xff0c;可以提高系统的稳定性和可靠性&#xff0c;控制系统的负载&#xff0c;削峰填谷&#xff0c;保证服务质量。 服务限流后的常见处理…

【论文笔记】KDD2019 | KGAT: Knowledge Graph Attention Network for Recommendation

Abstract 为了更好的推荐&#xff0c;不仅要对user-item交互进行建模&#xff0c;还要将关系信息考虑进来 传统方法因子分解机将每个交互都当作一个独立的实例&#xff0c;但是忽略了item之间的关系&#xff08;eg&#xff1a;一部电影的导演也是另一部电影的演员&#xff09…

【React】关于组件之间的通讯

&#x1f31f;组件化&#xff1a;把一个项目拆成一个一个的组件&#xff0c;为了便与开发与维护 组件之间互相独立且封闭&#xff0c;一般而言&#xff0c;每个组件只能使用自己的数据&#xff08;组件状态私有&#xff09;。 如果组件之间相互传参怎么办&#xff1f; 那么就要…

[nlp] TF-IDF算法介绍

&#xff08;1&#xff09;TF是词频(Term Frequency) 词频是文档中词出现的概率。 &#xff08;2&#xff09; IDF是逆向文件频率(Inverse Document Frequency) 包含词条的文档越少&#xff0c;IDF越大。

Maven依赖管理

依赖特性&#xff1a; 1、依赖配置 2、依赖传递 3、可选依赖 4、排除依赖 5、依赖范围

linux(centos) docker 安装 nginx

​1、拉取nginx最新版本镜像 docker pull nginx:latest 查看镜像 docker images 或者 docker images -a 2.启动nginx容器 docker run -d -p 80:80 --name nginx nginx 使用docker run命令&#xff0c;启动nginx容器。 --name&#xff0c;设置容器名。为方便记忆&#xff…