【目标检测论文解读复现NO.33】改进YOLOv5的新能源电池集流盘缺陷检测方法

前言
此前出了目标改进算法专栏,但是对于应用于什么场景,需要什么改进方法对应与自己的应用场景有效果,并且多少改进点能发什么水平的文章,为解决大家的困惑,此系列文章旨在给大家解读最新目标检测算法论文,帮助大家解答疑惑。解读的系列文章,本人已进行创新点代码复现,有需要的朋友可关注私信我。本文仅对论文代码实现,如果原文章的作者觉得不方便,请联系删除,尊重每一位论文作者。 

一、摘要

针对新能源汽车电池集流盘中因目标缺陷分布杂乱、尺寸跨度大和特征模糊而易出现误检、漏检的问题,提出一种基于多尺度可变形卷积的YOLOv5方法(YOLOv5s-4Scale-DCN),以用于汽车电池集流盘缺陷检测。首先,针对不同尺度的缺陷目标,在YOLOv5模型的基础上新增检测层,通过捕获不同尺度缺陷的特征以及融合不同深度的语义特征,提高对不同尺度缺陷目标的检测率;其次,引入可变形卷积,扩大特征图的感受野,使提取的特征辨析力更强,有效地提高了模型的缺陷识别能力。实验结果表明,所提的YOLOv5s-4Scale-DCN算法可以有效检测新能源汽车电池集流盘缺陷,m AP达到了91%,相较原算法提高了2.5%,FPS达到了113.6,重度不良和无盖缺陷这两种类别的缺陷,检测召回率达到了100%,满足新能源汽车电池集流盘缺陷实时检测要求。

二、网络模型及核心创新点

1.新增检测层

2.引入可形变卷积


```
第二步:定义yaml网络结构文件。
```python
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license# Parameters
nc: 4  # number of classes
depth_multiple: 0.33  # model depth multiple
width_multiple: 0.50  # layer channel multiple
anchors:- [10,13, 16,30, 33,23]  # P3/8- [30,61, 62,45, 59,119]  # P4/16- [116,90, 156,198, 373,326]  # P5/32# YOLOv5 v6.0 backbone
backbone:# [from, number, module, args][[-1, 1, Conv, [64, 6, 2, 2]],  # 0-P1/2[-1, 1, DCNConv, [128, 3, 2]],  # 1-P2/4[-1, 3, C3, [128]],[-1, 1, Conv, [256, 3, 2]],  # 3-P3/8[-1, 6, C3, [256]],[-1, 1, Conv, [512, 3, 2]],  # 5-P4/16[-1, 9, C3, [512]],[-1, 1, Conv, [1024, 3, 2]],  # 7-P5/32[-1, 3, C3, [1024]],[-1, 1, SPPF, [1024, 5]],  # 9]# YOLOv5 v6.0 head
head:[[-1, 1, Conv, [512, 1, 1]],[-1, 1, nn.Upsample, [None, 2, 'nearest']],[[-1, 6], 1, Concat, [1]],  # cat backbone P4[-1, 3, C3, [512, False]],  # 13[-1, 1, Conv, [256, 1, 1]],[-1, 1, nn.Upsample, [None, 2, 'nearest']],[[-1, 4], 1, Concat, [1]],  # cat backbone P3[-1, 3, C3, [256, False]],  # 17 (P3/8-small)[-1, 1, Conv, [256, 3, 2]],[[-1, 14], 1, Concat, [1]],  # cat head P4[-1, 3, C3, [512, False]],  # 20 (P4/16-medium)[-1, 1, Conv, [512, 3, 2]],[[-1, 10], 1, Concat, [1]],  # cat head P5[-1, 3, C3, [1024, False]],  # 23 (P5/32-large)[[17, 20, 23], 1, Detect, [nc, anchors]],  # Detect(P3, P4, P5)]```

三、应用数据集(模型构建过程)

本文实验所用的数据集为自行构建,使用从生产线上收集的真实磷酸铁锂汽车电池集流盘缺陷数据,由高分辨率巴斯勒工业相机在光线良好的室内环境下进行拍摄采集。原始图像分辨率为2448×2048,在预处理阶段通过Python以电极孔为中心对原始图像进行裁剪,去除无关背景,保留有用信息,截取之后的图像分辨率为1250×1200。使用Lableme数据标注工具对图片进行标注,标注后自动生成JSON格式的文件,文件名与图片名始终保持一致。

图8为良品图像和常见的5种新能源汽车电池集流盘缺陷类型:焊穿(Weld through)、焊偏(Welding offset)、无盖(No cover)、坏点(Bad point)、重度不良(Severely bad)。

四、实验效果(部分展示)

为了评估算法性能,我们将本文提出的YOLOv5s-4Scale-DCN改进算法与YOLOv5s、YOLOv5l、YOLOv5m、YOLOv5n、YOLOv5x、YOLOv7、YOLOv tiny、YOLOv7x、Faster R-CNN[26]和SSD[27]10种经典算法在自制据集上进行检测性能比较,所有实验均在相同参数设置下进行。

实验结果如表4所示,由表4可知,改进后的算法,mAP达到了91.0%,FPS达到了113.6,相比其他算法综合效果最佳。

五、实验结论

综上所述,改进后的YOLOv5s-4Scale-DCN算法漏检率低、误检率低、识别精度高、检测速度快,综合性能更强,有效降低了误检率、漏检率。

六、投稿期刊介绍

注:论文原文出自 陈彦蓉,高刃,吴文欢,唐海,袁磊.改进YOLOv5的新能源电池集流盘缺陷检测方法[J/OL].电子测量与仪器学报.

改进YOLOv5的新能源电池集流盘缺陷检测方法 - 中国知网

解读的系列文章,本人已进行创新点代码复现。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/75754.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

RabbitMQ输出日志配置

参考地址rabbitmq启用日志功能记录消息队列收发情况_rabbitmq开启日志_普通网友的博客-CSDN博客 启用日志插件命令 # 设置用户权限 rabbitmqctl set_user_tags mqtt-user administrator rabbitmqctl set_permissions -p / mqtt-user ".*" ".*" ".*&…

小白到运维工程师自学之路 第六十六集 (docker 网络模型)

一、概述 Docker网络模型是指Docker容器在网络中的通信方式和组织结构。Docker容器通过网络连接,使得容器之间可以相互通信,并与主机和外部网络进行交互。 在Docker中,有几种不同的网络模型可供选择: 1、主机模式(H…

媒介易讲解体育冠军助力品牌解锁市场营销新玩法

在当今竞争激烈的市场中,品牌推广成为企业取得商业成功的重要一环。然而,随着传统市场推广方式的日益饱和,企业急需创新的市场营销策略来吸引消费者的关注和认可。在这样的背景下,体育冠军助力品牌成为了一种备受瞩目的市场营销新…

【大数据】LPG日志采集方案(官网入门案例)

文章目录 1. LPG简介2. 安装3. 测试日志方案的效果3.1. 测试1:Promtail监控/var/log目录的变化3.2. 测试2:Grafana可视化查看日志3.3. 测试3:可以预见部署Spring Boot程序的日志也可以被Grafana查看3.4. 踩坑记录 4. 官方入门案例介绍4.1. 获…

【设计模式——学习笔记】23种设计模式——访问者模式Visitor(原理讲解+应用场景介绍+案例介绍+Java代码实现)

文章目录 案例引入要求传统方案 介绍基本介绍应用场景登场角色尚硅谷版本《图解设计模式》版本 案例实现案例一实现拓展 案例二(个人感觉这个案例较好)实现分析拓展一拓展二拓展三 总结额外知识双重分发 文章说明 案例引入 要求 测评系统需求:将观众分为男人和女人…

基于面向对象基础设计——里氏替换原则

在Java中,支持抽象和多态的关键机制之一是继承。正是使用了继承,我们才可以创建实现父类中抽象方法的子类。那么,是什么规则在支配着这种特殊的继承用法呢?最佳的继承层次的特征又是什么呢?在什么情况下会使我们创建的…

Mac端口扫描工具

端口扫描工具 Mac内置了一个网络工具 网络使用工具 按住 Command 空格 然后搜索 “网络实用工具” 或 “Network Utility” 即可 域名/ip转换Lookup ping功能 端口扫描 https://zhhll.icu/2022/Mac/端口扫描工具/ 本文由 mdnice 多平台发布

【深度学习_TensorFlow】梯度下降

写在前面 一直不太理解梯度下降算法是什么意思,今天我们就解开它神秘的面纱 写在中间 线性回归方程 如果要求出一条直线,我们只需知道直线上的两个不重合的点,就可以通过解方程组来求出直线 但是,如果我们选取的这两个点不在直…

eclipse was unable to locate its companion shared library

当转移或者Copy工程时, eclipse was unable to locate its companion shared library eclipse.ini 里面的路径配置错误导致 --launcher.library C:/Users/**/.p2/pool/plugins/org.eclipse.equinox. launcher.win32.win32.x86_64_1.2.700.v20221108-1024 -product …

ubuntu下,在vscode中使用platformio出现 Can not find working Python 3.6+ Interpreter的问题

有一段时间没有使用platformio了,今天突然使用的时候,发现用不了,报错: Ubuntu PlatformIO: Can not find working Python 3.6 Interpreter. Please install the latest Python 3 and restart VSCode。 上网一查,发现…

Java版工程行业管理系统源码-专业的工程管理软件-em提供一站式服务

​ Java版工程项目管理系统 Spring CloudSpring BootMybatisVueElementUI前后端分离 功能清单如下: 首页 工作台:待办工作、消息通知、预警信息,点击可进入相应的列表 项目进度图表:选择(总体或单个)项目…

Docker 安装

1、下载 去官网下载Docker: Accelerated, Containerized Application Development 下载完成就ok了,下载之后估计是打不开的,我下了一个 去微软商店找wsl然后下载,下载之后Docker就好了。 这个就能用了

72. 编辑距离

题目链接:力扣 解题思路:

Modbus tcp转ETHERCAT网关modbus tcp/ip协议

捷米JM-ECT-TCP网关能够连接到Modbus tcp总线和ETHERCAT总线中,实现两种不同协议设备之间的通讯。这个网关能够大大提高工业生产的效率和生产效益,让生产变得更加智能化。捷米JM-ECT-TCP 是自主研发的一款 ETHERCAT 从站功能的通讯网关。该产品主要功能是…

Jetson Docker 编译 FFmpeg 支持硬解nvmpi和cuvid

0 设备和docker信息 设备为NVIDIA Jetson Xavier NX,jetpack版本为 5.1.1 [L4T 35.3.1] 使用的docker镜像为nvcr.io/nvidia/l4t-ml:r35.2.1-py3,详见https://catalog.ngc.nvidia.com/orgs/nvidia/containers/l4t-ml 使用下列命令拉取镜像: sudo docker pull nvcr…

前端Vue入门-day06-路由进阶

(创作不易,感谢有你,你的支持,就是我前行的最大动力,如果看完对你有帮助,请留下您的足迹) 目录 路由的封装抽离 声明式导航 导航链接 两个类名 自定义高亮类名 跳转传参 1. 查询参数传参 2. 动态…

Python接口自动化-requests模块之post请求

一、源码解析 def post(url, dataNone, jsonNone, **kwargs):r"""Sends a POST request.:param url: URL for the new :class:Request object.:param data: (optional) Dictionary, list of tuples, bytes, or file-likeobject to send in the body of the :cla…

Unity通过代码切换材质

效果展示 代码 using System.Collections; using System.Collections.Generic; using UnityEngine;public class MaterialSwitcher : MonoBehaviour {public Material newMaterial; // 新材质private Material oldMaterial; // 旧材质private Renderer renderer; // 渲染器组件…

秋招算法备战第37天 | 738.单调递增的数字、968.监控二叉树、贪心算法总结

738. 单调递增的数字 - 力扣(LeetCode) 这个问题是关于找到一个小于或等于给定数字n的最大单调递增数字。 我们可以将数字n转换为字符数组,然后从左到右扫描,寻找第一个违反单调递增条件的位置。一旦找到这样的位置,…

线上java程序CPU及内存占用过高问题排查总结

背景 最近发现线上的一个JAVA程序总是过段时间慢慢卡死,最后导致无法提供服务,外部请求接口超时。 经排查发现,该程序CPU及内存占用都很高,导致整个系统负载很高。 到这里,就想到了对程序内存进行分析。排查过程 查询…