深度学习,神经网络介绍

目录

1.神经网络的整体构架

2.神经网络架构细节

3.正则化与激活函数

4.神经网络过拟合解决方法

1.神经网络的整体构架

 

ConvNetJS demo: Classify toy 2D data

我们可以看看这个神经网络的网站,可以用来学习。

神经网络的整体构架如下1:

  1. 感知器(Perceptron)感知器是所有神经网络中最基本的,也是更复杂的神经网络的基本组成部分。它只连接一个输入神经元和一个输出神经元。

  2. 前馈(Feed-Forward)网络前馈网络是感知器的集合,其中有三种基本类型的层:输入层、隐藏层和输出层。在每个连接过程中,来自前一层的信号被乘以一个权重,增加一个偏置,然后通过一个激活函数。前馈网络使用反向传播迭代更新参数,直到达到理想的性能。

  3. 残差网络(Residual Networks/ResNet深层前馈神经网络的一个问题是所谓的梯度消失,即当网络太深时,有用的信息无法在整个网络中反向传播。当更新参。

对于神经网络的整体构架,我们总结为四点:层次结构、神经元、全连接和非线性。

 

层次结构

由上图不难看出,在神经网络中神经网络的我们一般分成三个部分:

1:输入层(input layer)

2:隐藏层(hidden layer)

3:输出层(output layer)

ps:要注意的是,中间的隐藏层可以有多层。

神经元

每个层次中都有许多圆圆的球似的东西,这个东西就是在神经网络中的神经元,就是数据的量或者是矩阵的大小,每一种层次中的神经元中的含量不太一样。

在输入层中的每一个神经元里面是你输入原始数据(一般称为X)的不同特征,比如x为一张图片,这张图片的像素是32323,其中的每一个像素都是它的特征吧,所以有3072个特征对应的输入层神经元个数就是3072个,这些特征以矩阵的形式进行输入的。我们举个例子比如我们的输入矩阵为1*3072(第一维的数字表示一个batch(batch指的是每次训练输入多少个数据)中有多少个输入;第二维数字中的就是每一个输入有多少特征。)

在隐藏层中的每一层神经元表示对x进行一次更新的数据,而每层有几个神经元(比如图中hidden1层中有四个神经元)表示将你的输入数据的特征扩展到几个(比如图中就是四个),就比如你的输入三个特征分别为年龄,体重,身高,而图中hidden1层中第一个神经元中经过变换可以变成这样‘年龄0.1+体重0.4+身高0.5’,而第二个神经元可以表示成‘年龄0.2+体重0.5+身高0.3’,每一层中的神经元都可以有不同的表示形式。

在输出层中的的神经元个数主要取决于你想要让神经网络干什么,比如你想让它做一个10分类问题,输出层的矩阵就可以是’1*10’的矩阵(第一维表示的与输入层表示数字相同,后面10就是10种分类)。

全连接

我们看到的每一层和下一层中间都有灰色的线,这些线就被称为全连接(因为你看上一层中每个神经元都连接着下一层中的所有神经元),而这些线我们也可以用一个矩阵表示,这个矩阵我们通常称为‘权重矩阵’,用大写的W来表示(是后续我们需要更新的参数)。 权重矩阵W的维数主要靠的是上一层进来数据的输入数据维数和下一层需要输入的维数,可以简单理解为上有一层有几个神经元和下一层有几个神经元,例如图中input layer中有3个神经元,而hidden1 layer中有4个神经元,中的W的维度就为‘3*4’,以此类推。(主要是因为我们全连接层的形式是矩阵运算形式,需要满足矩阵乘法的运算法则。

非线性

非线性(non-linear),即 变量之间的数学关系,不是直线而是曲线、曲面、或不确定的属性,叫非线性。非线性是自然界的复杂性的典型性质之一;与线性相比,非线性更接近客观事物性质本身,是量化研究认识复杂知识的重要方法之一;凡是能用非线性描述的关系,通称非线性关系。

2.神经网络架构细节

整体构架

基础构架:f=W2max(0, W1x)

继续堆加一层:f=W3max(0, W2max(0,W1x))

神经网络的强大之处在于用更多的参数来拟合复杂的数据。

神经元个数对结果的影响

改之前的:

layer_defs = [];
layer_defs.push({type:'input', out_sx:1, out_sy:1, out_depth:2});
layer_defs.push({type:'fc', num_neurons:, activation: 'tanh'});
layer_defs.push({type:'fc', num_neurons:2, activation: 'tanh'});
layer_defs.push({type:'softmax', num_classes:2});
​
net = new convnetjs.Net();
net.makeLayers(layer_defs);
​
trainer = new convnetjs.SGDTrainer(net, {learning_rate:0.01, momentum:0.1, batch_size:10, l2_decay:0.001});

 

layer_defs = [];
layer_defs.push({type:'input', out_sx:1, out_sy:1, out_depth:2});
layer_defs.push({type:'fc', num_neurons:2, activation: 'tanh'});
layer_defs.push({type:'fc', num_neurons:2, activation: 'tanh'});
layer_defs.push({type:'softmax', num_classes:2});
​
net = new convnetjs.Net();
net.makeLayers(layer_defs);
​
trainer = new convnetjs.SGDTrainer(net, {learning_rate:0.01, momentum:0.1, batch_size:10, l2_decay:0.001});

改成2以后的图样

然后神经个数调为5以后的样子:

layer_defs = [];
layer_defs.push({type:'input', out_sx:1, out_sy:1, out_depth:2});
layer_defs.push({type:'fc', num_neurons:5, activation: 'tanh'});
layer_defs.push({type:'fc', num_neurons:5, activation: 'tanh'});
layer_defs.push({type:'softmax', num_classes:2});
​
net = new convnetjs.Net();
net.makeLayers(layer_defs);
​
trainer = new convnetjs.SGDTrainer(net, {learning_rate:0.01, momentum:0.1, batch_size:10, l2_decay:0.001});

 

3.正则化与激活函数

正则化的作用

机器学习中经常会在损失函数中加入正则项,称之为正则化(Regularize)。防止模型过拟合,也就是说,在损失函数上加上某些规则(限制),缩小解空间,从而减少求出过拟合解的可能性。

激活函数

常用的激活函数有Sigmoid,Relu,Tanh等,进行相应的非线性变换

 

激活函数是用来加入非线性因素的,提高神经网络对模型的表达能力,解决线性模型所不能解决的问题。

学高等数学的时候,在不定积分那一块,有个画曲为直思想来近似求解。那么,我们可以来借鉴一下,用无数条直线去近似接近一条曲线。

4.神经网络过拟合解决方法

参数初始化

参数初始化是很重要的,通常我们都适用随机策略来进行参数初始化

W = 0.01 * np.random.randn(D, H)

数据预处理

不同的处理结果会使得模型的效果发生很大的差异

 

DROP-OUT

这就是传说中的七伤拳

过拟合是神经网络中一个令人非常头疼的大问题

  1. 一种含义是:在机器学习中,是解决模型过拟合问题的策略。

  2. 另一种含义是:是dropout技术的实现,让每一层网络的输出被随机选择丢弃一些神经元,这样可以防止梯度消失和爆炸的问题,有助于提升整个网络的泛化能力。

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/75790.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

完全背包(从二维到一维)

图片来源活动 - AcWing 有 N件物品和一个容量为 V 的背包&#xff0c;每件物品有各自的价值且能被选择无数次&#xff0c;要求在有限的背包容量下&#xff0c;装入的物品总价值最大。 一&#xff0c;暴力解法&#xff08;容易超时&#xff09; #include<iostream> usi…

Java课题笔记~ 关联映射

一、MyBatis关联查询 在关系型数据库中&#xff0c;表与表之间存在着3种关联映射关系&#xff0c;分别为一对一、一对多、多对多。 一对一&#xff1a;一个数据表中的一条记录最多可以与另一个数据表中的一条记录相关。列如学生与学号就属于一对一关系。 一对多&#xff1a;主…

Intellij IDEA运行报Command line is too long的解决办法

想哭&#xff0c;vue前端运行起来&#xff0c;对应的后端也得起服务。 后端出的这个bug&#xff0c;下面的博客写的第二种方法&#xff0c;完整截图是下面这个。 ​​​​​​​​​​​​​​​​​​​​Intellij IDEA运行报Command line is too long的解决办法 - 知乎 (zh…

奥威BI系统|秒分析,更适合分析大数据

根据以往的经验&#xff0c;当数据量多到一定程度就容易导致系统卡顿、崩溃。这种现象给企业级数据分析造成了极大的困扰。随着业务发展扩大和分析需求精细化&#xff0c;企业需要一套能秒分析大数据的系统。而奥威BI系统就是这样一款可以秒分析大数据的商业智能系统。 奥威BI…

二十三种设计模式第二十三篇--状态模式

状态模式&#xff0c;是一种行为模式&#xff0c;在软件开发过程中&#xff0c;对象按照不同的情况做出不同的行为&#xff0c;我们把这样的对象称为具有状态的对象&#xff0c;而把影响对象行为的一个或者多个动态变化的属性称为状态。 对这种具有状态的对象变成&#xff0c;…

其他时区的时间转换成当前时区的时间

例子&#xff1a;项目获取到的时间在东二区&#xff0c;用户在东八区&#xff0c;那么要把东二区的时间转换成东八区的时间 时区可在pc上设置 //转换当前时区的时间 兼容ios、时间戳 export function convertTureTime(time){let nDate new Date();//当前时间let y nDate.ge…

用html+javascript打造公文一键排版系统14:为半角和全角字符相互转换功能增加英文字母、阿拉伯数字、标点符号、空格选项

一、实际工作中需要对转换选项细化内容 在昨天我们实现了最简单的半角字符和全角字符相互转换功能&#xff0c;就是将英文字母、阿拉伯数字、标点符号、空格全部进行转换。 在实际工作中&#xff0c;我们有时只想英文字母、阿拉伯数字、标点符号、空格之中的一两类进行转换&a…

C# 控制台彩色深度打印 工具类

文章目录 前言Nuget 环境安装代码使用打印结果 总结 前言 有时候我们想要靠打印获得程序信息&#xff0c;因为Dubeg模式需要一点一点断点进入进出&#xff0c;但是我们觉得断点运行实在是太慢了&#xff0c;还是直接打印后找结果会好一点。 Nuget 环境安装 想自己写的话可以看…

招投标系统简介 招投标系统源码 java招投标系统 招投标系统功能设计 tbms

​功能模块&#xff1a; 待办消息&#xff0c;招标公告&#xff0c;中标公告&#xff0c;信息发布 描述&#xff1a; 全过程数字化采购管理&#xff0c;打造从供应商管理到采购招投标、采购合同、采购执行的全过程数字化管理。通供应商门户具备内外协同的能力&#xff0c;为外…

OpenCV图像处理技巧之空间滤波

1. 引言 再次问好&#xff0c;图像处理爱好者们&#xff01;&#x1f31f; 在前面的章节中&#xff0c;我们学习了图像处理的基础知识&#xff0c;并展现了图像增强的魅力。在这一节中&#xff0c;我们将更深入地研究空间滤波技术。 闲话少说&#xff0c;我们直接开始吧&#…

跟CZY一起深入理解C++(1)-一些基础知识

跟CZY一起深入理解C些基础知识 常量constconstexpr 初始化枚举与枚举类分离编译 常量 const 常量亦即不可改变的量(实际上可以暴力破解),那么常量在C中主要有以下几种应用场景 定义常量变量 //如果有以下情况,在GCC上能够破解,而在MSVC上不会改变 // int放在栈区,实际上是可…

Leetcode-每日一题【剑指 Offer 06. 从尾到头打印链表】

题目 输入一个链表的头节点&#xff0c;从尾到头反过来返回每个节点的值&#xff08;用数组返回&#xff09;。 示例 1&#xff1a; 输入&#xff1a;head [1,3,2]输出&#xff1a;[2,3,1] 限制&#xff1a; 0 < 链表长度 < 10000 解题思路 1.题目要求我们从尾到头反过…

【数据结构】排序算法系列

常见的排序如下&#xff1a; 一、比较类排序 1. 交换排序 &#xff08;1&#xff09; 冒泡排序 【数据结构】交换排序&#xff08;一&#xff09;——冒泡排序_Jacky_Feng的博客-CSDN博客 &#xff08;2&#xff09; 快速排序 【数据结构】交换排序&#xff08;二&#xf…

IDEA中修改类头的文档注释信息

IDEA中修改类头的文档注释信息 选择File--Settings--Editor--File and Code Templates--Includes&#xff0c;可以把文档注释写成这种的 /**author: Arbicoralcreate: ${YEAR}-${MONTH}-${DAY} ${TIME}Description: */这样回看就可以很清楚的看到自己创建脚本的时间&#xff…

FFmpeg解码详细流程

介绍 FFmpeg的 libavcodec 模块完成音视频多媒体的编解码模块。老版本的 FFmpeg 将avcodec_decode_video2()作为视频的解码函数 API&#xff0c;将avcodec_decode_audio4()作为音频的解码函数 API&#xff1b;从 3.4版本开始已经将二者标记为废弃过时 API&#xff08;attribut…

Jenkins工具系列 —— 启动 Jenkins 服务报错

错误显示 apt-get 安装 Jenkins 后&#xff0c;自动启动 Jenkins 服务报错。 排查原因 直接运行jenkins命令 发现具体报错log&#xff1a;Failed to start Jetty或Failed to bind to 0.0.0.0/0.0.0.0:8080或Address already in use 说明&#xff1a;这里提示的是8080端口号…

SSM(Vue3+ElementPlus+Axios+SSM前后端分离)--搭建Vue 前端工程[一]

文章目录 SSM--搭建Vue 前端工程--项目基础界面实现功能01-搭建Vue 前端工程需求分析/图解代码实现搭建Vue 前端工程下载node.js LTS 并安装: node.js 的npm创建Vue 项目使用idea 打开ssm_vue 项目, 并配置项目启动 Vue3 项目目录结构梳理Vue3 项目结构介绍 配置Vue 服务端口El…

iOS数字转为图片

根据数字&#xff0c;转成对应的图片 - (void)viewDidLoad {[super viewDidLoad];[self testNum2String:10086]; }/// 根据数字&#xff0c;显示对应的图片 数字用特定的图片显示 - (void)testNum2String:(NSInteger)num {UIView *numContentView [[UIView alloc] initWithFr…

有利于提高xenomai /PREEMPT-RT 实时性的一些配置建议

版权声明:转自: https://www.cnblogs.com/wsg1100 一、前言 1. 什么是实时 “实时”一词在许多应用领域中使用,人们它有不同的解释,并不总是正确的。人们常说,如果控制系统能够对外部事件做出快速反应,那么它就是实时运行的。根据这种解释,如果系统速度快,则系统被认…

unity tolua热更新框架教程(1)

git GitHub - topameng/tolua: The fastest unity lua binding solution 拉取到本地 使用unity打开&#xff0c;此处使用环境 打开前几个弹窗(管线和api升级)都点确定 修改项目设置 切换到安卓平台尝试打包编译 设置包名 查看报错 打开 屏蔽接口导出 重新生成 编译通过 …