【雷达通信】非相干多视处理(CSA)(Matlab代码实现)

💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

💥1 概述

📚2 运行结果

🎉3 参考文献

🌈4 Matlab代码实现


💥1 概述

“在SAR系统中,多个独立的视可以由飞行载体以不同的方位角通过观察点时天。
一视由天线沿方位向第一个前向四分之一波束部分产生,下一视则来自下一个四分之一波束,
以此类推。然后,由于来自波束各部分的信号到达雷达接收机是重叠在一起的,所
以在时域或者空域上无法对数据进行分离。然而,具有高方位时间带宽积的一个实用SAR系
统是将时间和频率两者绑定在一起的,在多普勒域内包含了各视的所有信息。也就是说,具
有较高多普勒频率的数据一定是由方位向波束前缘触及到的地形点产生的,而当同一地点出
在方位波束后缘四分之一时,产生了多普勒频段低四分之一部分。”[1]

非相干多视处理(Coherent Sum and Average, CSA)是一种用于雷达通信的信号处理技术。在雷达通信中,使用多个接收机来接收从目标反射回来的信号。CSA技术将多个接收到的信号进行处理,以提高信号的质量和可靠性。

CSA技术的基本思想是利用信号的非相干性质来降低噪声的影响。当多个接收机接收到相同的信号时,由于噪声是随机的,它们在接收到信号时的相位和幅度会有所不同。通过将多个接收到的信号进行相加与平均,可以抵消掉噪声的影响,从而提高信号的信噪比。

CSA技术的具体实现包括以下步骤:
1. 将多个接收机接收到的信号进行对齐,即校准它们的时间延迟和相位差。
2. 将对齐后的信号进行相加,以增强信号的幅度。
3. 将相加后的信号进行平均,以降低噪声的影响。

通过采用CSA技术,可以显著提高雷达通信系统的性能和可靠性。它可以用于各种雷达通信应用,如雷达测距、雷达成像和雷达通信等。

需要注意的是,CSA技术虽然可以提高信号的质量,但也会增加系统的计算复杂性和延时。因此,在实际应用中需要权衡计算资源和性能要求。

📚2 运行结果

 

 

部分代码:

Kr = -Kr;                       % 将调频率Kr改成负值
BW_range = 30.111e+06;          % 脉冲宽度
Vr = 7062;                      % 有效雷达速率
Ka = 1733;                      % 方位调频率
fnc = -6900;                    % 多普勒中心频率
Fa = PRF;                       % 方位向采样率
lamda = c/f0;                   % 波长
T_start = 6.5959e-03;           % 数据窗开始时间

Nr = round(Tr*Fr);              % 线性调频信号采样点数
Nrg = Nrg_cells;                % 距离线采样点数
if b == 1 || b == 2
    Naz = Nrg_lines_blk;         % 每一个数据块的距离线数
else
    Naz = Nrg_lines;              % 两个数据块,总共的距离线数
end
NFFT_r = Nrg;                   % 距离向FFT长度
NFFT_a = Naz;                   % 方位向FFT长度

R_ref = R0;                     % 参考目标选在场景中心,其最近斜距为 R_ref  
fn_ref = fnc;                   % 参考目标的多普勒中心频率

%%
%
% --------------------------------------------------------------------
% 对原始数据进行补零
% --------------------------------------------------------------------
if b == 1 || b == 2 
    data = zeros(1*2048,3000);
else
    data = zeros(2*2048,3000);
end
data(1:Naz,1:Nrg) = s_echo;
clear s_echo;
s_echo = data;
clear data;
[Naz,Nrg] = size(s_echo);

NFFT_r = Nrg;                   % 距离向FFT长度
NFFT_a = Naz;                   % 方位向FFT长度

% 作图显示
figure;
imagesc(abs(s_echo));
title('补零后的原始数据');       % 补零后的原始回波数据(未处理)的幅度图像
%}

%%
% --------------------------------------------------------------------
% 距离(方位)向时间,频率相关定义
% --------------------------------------------------------------------
% 距离
tr = 2*R0/c + ( -Nrg/2 : (Nrg/2-1) )/Fr;                % 距离时间轴
fr = ( -NFFT_r/2 : NFFT_r/2-1 )*( Fr/NFFT_r );          % 距离频率轴
% 方位
ta = ( -Naz/2: Naz/2-1 )/Fa;                            % 方位时间轴
fa = fnc + fftshift( -NFFT_a/2 : NFFT_a/2-1 )*( Fa/NFFT_a );    % 方位频率轴

% 生成距离(方位)时间(频率)矩阵
tr_mtx = ones(Naz,1)*tr;    % 距离时间轴矩阵,大小:Naz*Nrg
ta_mtx = ta.'*ones(1,Nrg);  % 方位时间轴矩阵,大小:Naz*Nrg
fr_mtx = ones(Naz,1)*fr;    % 距离频率轴矩阵,大小:Naz*Nrg
fa_mtx = fa.'*ones(1,Nrg);  % 方位频率轴矩阵,大小:Naz*Nrg

🎉3 参考文献

部分理论来源于网络,如有侵权请联系删除。

[1]《合成孔径雷达成像——算法与实现》 ,(美)卡明等著;洪文等译;电子工业出版社;

[2]《合成孔径雷达——系统与信号处理》 ,(美)柯兰德等著;韩传钊等译;电子工业出

版社

🌈4 Matlab代码实现

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/76184.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Kubernetes高可用集群二进制部署(三)部署api-server

Kubernetes概述 使用kubeadm快速部署一个k8s集群 Kubernetes高可用集群二进制部署(一)主机准备和负载均衡器安装 Kubernetes高可用集群二进制部署(二)ETCD集群部署 Kubernetes高可用集群二进制部署(三)部署…

vue2-v-if和v-for的优先级是什么?

1、v-if和v-for的区别 作用: v-if指令用于条件性地渲染一块内容,这块内容只会在指令的表达式返回true值的时候被渲染。 v-for指令基于一个数组来渲染一个列表,v-for指令需要使用item in items 形式的特殊语法,其中,it…

性能测试怎么做?测试工具怎么选择?

在当前软件测试行业,熟练掌握性能测试已经是测试工程师们面试的敲门砖了,当然还有很多测试朋友们每天的工作更多的是点点点,性能方面可能也只是做过简单的并发测试,对于编写脚本,搭建环境方面也比较陌生。今天这篇文章…

vue3搭建(vite+create-vue)

目录 前提条件 输入命令 对于Add an End-to-End Testing Solution nightwatch和Cypress 和 Playwright 运行 前提条件 熟悉命令行已安装 16.0 或更高版本的 Node.js (node -v查看版本) 输入命令 npm init vuelatest 这一指令将会安装并执行 create-…

NVIDIA 535.86.05 Linux 图形驱动程序改进 Wayland 支持

导读NVIDIA公司近日发布了适用于 Linux、FreeBSD 和 Solaris 系统的 NVIDIA 535.86.05 图形驱动程序,作为其生产分支的维护更新,解决了各种错误和问题。 NVIDIA 535.86.05 是在 NVIDIA 535.54.03 发布一个多月之后发布的,它通过解决在使用某…

PSO粒子群优化算法

PSO粒子群优化算法 算法思想matlab代码python代码 算法思想 粒子群算法(Particle Swarm Optimization) 优点: 1)原理比较简单,实现容易,参数少。 缺点: 1)易早熟收敛至局部最优、迭代后期收敛速度慢的…

linux 文件的权限

修改文件的权限 我这里有一个test.txt 文件,我们ll 查看一下该文件相应的属性信息 其中,权限的位置是相对固定的即: 第一个位置是r 权限,代表可读权限。 第二个位置是w权限,代表可修改权限。 第三个位置是x权限&…

SSL 证书过期巡检脚本 (Python 版)

哈喽大家好,我是咸鱼 之前写了个 shell 版本的 SSL 证书过期巡检脚本 (文章:《SSL 证书过期巡检脚本》),后台反响还是很不错的 那么今天咸鱼给大家介绍一下 python 版本的 SSL 证书过期巡检脚本 (完整代码…

本地mvn仓库清理无用jar包

背景 开发java时间久了,本地的m2仓库就会产生很多过期的jar包,不清理的话比较占空间。 原理 是通过比较同一目录下,对应jar包的版本号的大小,保留最大版本号那个,删除其他的。 脚本 执行脚本见文章顶部 执行方式 …

mac使用mvn下载node-sass 会Binary download failed, trying source

m1 上使用nvm 以下node的版本可以直接下载(Binary download,而不是 trying source)而不用切换mac cpu架构 zhiwenwenzhiwenwendeMBP cockpit % nvm install 14.15.5 Downloading and installing node v14.15.5... Downloading https://node…

华为云hcip核心知识笔记(存储服务规划)

云上存储 : 云硬盘:基于分布式架构,可弹性扩展的虚拟块存储服务 注意事项 挂载云硬盘实例和云硬盘必须在同一区域,否则挂载失败文件存储服务:完全托管的共享文件存储 可以为多个实例实现共享访问,不同vpc中可以进行对…

网络工程师 快速入门

需要掌握 以下技术 1.网络 基础 知识 TCP/IP 、OSI 7层协议、IP地址、ARP地址解析协议、ICMP(英特网控制报文协议,ping)等 入门面试常问问题。 2.路由 路由匹配 三原则、静态路由、OSPF路由协议。 2.交换 如何放数据? VLAN TRU…

【《快速构建AI应用——AWS无服务器AI应用实战》——基于云的解决方案快速完成人工智能项目的指南】

基于云的人工智能服务可以自动完成客户服务、数据分析和财务报告等领域的各种劳动密集型任务。其秘诀在于运用预先构建的工具,例如用于图像分析的Amazon Rekognition或用于自然语言处理的AWS Comprehend。这样,就无须创建昂贵的定制软件系统。 《快速构…

Windows搭建Snort环境及使用方式

目录 0x01 前置环境0x02修改配置文件0x03 自测0x04 使用0x05 感言 0x01 前置环境 环境描述windows10snort2.9.2https://www.snort.org/downloads 先把上面环境下载好! 需要注意的是安装npcap这个软件 0x02修改配置文件 软件安装目录:C:/Snort/ 配置文…

Mac电脑怎么使用“磁盘工具”修复磁盘

我们可以使用“磁盘工具”的“急救”功能来查找和修复磁盘错误。 “磁盘工具”可以查找和修复与 Mac 磁盘的格式及目录结构有关的错误。使用 Mac 时,错误可能会导致意外行为,而重大错误甚至可能会导致 Mac 彻底无法启动。 继续之前,请确保您…

SpringBoot3---核心特性---2、Web开发I

星光下的赶路人star的个人主页 如果我们总是等待绝对的一切就绪,那我们将永远无法开始 文章目录 1、WebMvcAutoConfiguration1.1 生效条件1.2 效果1.3 WebMvcConfigure接口1.4 静态资源规则代码1.5 EnableWebMvcConfiguration源码1.6 为什么容器中放一个WebMvcConfi…

Go 微服务开发框架 DMicro 的设计思路

Go 微服务开发框架 DMicro 的设计思路 DMicro 源码地址: Gitee:dmicro: dmicro是一个高效、可扩展且简单易用的微服务框架。包含drpc,dserver等 背景 DMicro 诞生的背景,是因为我写了 10 来年的 PHP,想在公司内部推广 Go, 公司内部的组件及 rpc 协议…

Ubuntu服务器ELK部署与实践

文章目录 1. Docker安装2. 拉镜象2.1 ElastciSearch2.2 Kibana2.3 logstash 3. 数据展示 1. Docker安装 看之前的文章 docker ubuntu完全卸载docker及再次安装 Ubuntu安装 Docker 此外,Docker偶尔会出现这种问题dial tcp: lookup registry-1.docker.io on 192.168.1…

在 3ds Max 中使用相机映射将静止图像转换为实时素材

推荐: NSDT场景编辑器 助你快速搭建可二次开发的3D应用场景 1. 在 Photoshop 中准备图像 步骤 1 这是我将在教程中使用的静止图像。 这是我的静态相机纸箱的快照。 静止图像 步骤 2 打开 Photoshop。将图像导入 Photoshop。 打开 Photoshop 步骤 3 单击套索工…

Python---Numpy

文章目录 1.Numpy是什么?2.ndarray2.1 什么是ndarray?2.2 ndarray的属性2.3 ndarray的类型 3.Numpy基本操作3.1 生成0或1的数组3.2 从现有数组生成数组拓展:浅拷贝和深拷贝 3.3 生成固定范围的数组3.4 生成随机数组3.4.1 正态分布3.4.2 均匀分布 3.5 形…