opencv35-形态学操作-腐蚀cv2.erode()

形态学,即数学形态学(Mathematical Morphology),是图像处理过程中一个非常重要的研 究方向。形态学主要从图像内提取分量信息,该分量信息通常对于表达和描绘图像的形状具有 重要意义,通常是图像理解时所使用的最本质的形状特征。例如,在识别手写数字时,能够通
过形态学运算得到其骨架信息,在具体识别时,仅针对其骨架进行运算即可。形态学处理在视觉检测、文字识别、医学图像处理、图像压缩编码等领域都有非常重要的应用。

形态学操作主要包含:腐蚀、膨胀、开运算、闭运算、形态学梯度(Morphological Gradient)运算、顶帽运算(礼帽运算)、黑帽运算等操作。腐蚀操作和膨胀操作是形态学运算的基础,
将腐蚀和膨胀操作进行结合,就可以实现开运算、闭运算、形态学梯度运算、顶帽运算、黑帽运算、击中击不中等不同形式的运算。

腐蚀原理

腐蚀是最基本的形态学操作之一,它能够将图像的边界点消除,使图像沿着边界向内收缩,也可以将小于指定结构体元素的部分去除。

说白了就是让图片中的胖子慢慢的变成瘦子

腐蚀用来“收缩”或者“细化”二值图像中的前景,借此实现去除噪声、元素分割等功能。

例如,在图 8-1 中,左图是原始图像,右图是对其腐蚀的处理结果。

在这里插入图片描述
在腐蚀过程中,通常使用一个结构元来逐个像素地扫描要被腐蚀的图像,并根据结构元和被腐蚀图像的关系来确定腐蚀结果。

例如,在图 8-2 中,整幅图像的背景色是黑色的,前景对象是一个白色的圆形。图像左上角的深色小方块是遍历图像所使用的结构元。在腐蚀过程中,要将该结构元逐个像素地遍历整幅图像,并根据结构元与被腐蚀图像的关系,来确定腐蚀结果图像中对应结构元中心点位置的像素点的值。

在这里插入图片描述

需要注意的是,腐蚀操作等形态学操作是逐个像素地来改变值的,每次判定的点都是与结构元中心点所对应的点。

图 8-3 中的两幅图像表示结构元与前景色的两种不同关系。
根据这两种不同的关系来决定,腐蚀结果图像中的结构元中心点所对应位置像素点的像素值。

  1. 如果结构元完全处于前景图像中(图 8-3 的左图),就将结构元中心点所对应的腐蚀结果图像中的像素点处理为前景色(白色,像素点的像素值为 1)。
  2. 如果结构元未完全处于前景图像中(可能部分在,也可能完全不在,图 8-3 的右图),就将结构元中心点对应的腐蚀结果图像中的像素点处理为背景色(黑色,像素点的像素值为 0)。

在这里插入图片描述
针对图 8-3 中的图像,腐蚀的结果就是前景色的白色圆直径变小。上述结构元也被称为核。

例如,有需要被腐蚀的图像 img,其值如下,其中 1 表示白色前景,0 表示黑色背景:

[[0 0 0 0 0]
[0 1 1 1 0]
[0 1 1 1 0]
[0 1 1 1 0]
[0 0 0 0 0]]

有一个结构元 kernel,其值为:

[[1]
[1]
[1]]

如果使用结构元 kernel 对图像 img 进行腐蚀,则可以得到腐蚀结果图像 rst:

[[0 0 0 0 0]
[0 0 0 0 0]
[0 1 1 1 0]
[0 0 0 0 0]
[0 0 0 0 0]]

这是因为,当结构元 kernel 在图像 img 内逐个像素遍历时,只有当核 kernel 的中心点 “kernel[1,0]”位于 img 中的 img[2,1]、img[2,2]、img[2,3]时,核才完全处于前景图像中。

所以在腐蚀结果图像 rst 中,只有这三个点的值被处理为 1,其余像素点的值被处理为 0。

上述示例如图 8-4 所示,其中:

  1. 图(a)表示要被腐蚀的 img。
  2. 图(b)是核 kernel。
  3. 图©中的阴影部分是 kernel 在遍历 img 时,kernel 完全位于前景对象内部时的 3 个全部
    可能位置;此时,核中心分别位于 img[2,1]、img[2,2]和 img[2,3]处。
  4. 图(d)是腐蚀结果 rst,即在 kernel 完全位于前景图象中时,将其中心点所对应的 rst 中像素点的值置为 1;当 kernel 不完全位于前景图像中时,将其中心点对应的 rst 中像素点的值置为 0。

在这里插入图片描述

函数 cv2.erode() 说明

在 OpenCV 中,使用函数 cv2.erode()实现腐蚀操作,其语法格式为:

dst = cv2.erode( src, kernel[, anchor[, iterations[, borderType[,
borderValue]]]] )

式中:

  1. dst 是腐蚀后所输出的目标图像,该图像和原始图像具有同样的类型和大小。

  2. src 是需要进行腐蚀的原始图像,图像的通道数可以是任意的。但是要求图像的深度必须是 CV_8U、CV_16U、CV_16S、CV_32F、CV_64F 中的一种。

  3. kernel 代表腐蚀操作时所采用的结构类型。它可以自定义生成,也可以通过函数cv2.getStructuringElement()生成。

  4. anchor 代表 element 结构中锚点的位置。该值默认为(-1,-1),在核的中心位置。

  5. iterations 是腐蚀操作迭代的次数,该值默认为 1,即只进行一次腐蚀操作。

  6. borderType 代表边界样式,一般采用其默认值 BORDER_CONSTANT。该项的具体值如表 8-1 所示。

在这里插入图片描述

  1. borderValue 是边界值,一般采用默认值。在 C++中提供了函数 morphologyDefaultBorderValue()来返回腐蚀和膨胀的“魔力(magic)”边界值,Python 不支持该函数

代码示例 :使用数组演示腐蚀的基本原理

代码如下:

import cv2
import numpy as np
img=np.zeros((5,5),np.uint8)
#对图像进行赋值
img[1:4,1:4]=1
#设置卷积核
kernel = np.ones((3,1),np.uint8)
#对图像进行腐蚀操作
erosion = cv2.erode(img,kernel)
print("img=\n",img)
print("kernel=\n",kernel)
print("erosion=\n",erosion)

运行结果:

img=[[0 0 0 0 0][0 1 1 1 0][0 1 1 1 0][0 1 1 1 0][0 0 0 0 0]]
kernel=[[1][1][1]]
erosion=[[0 0 0 0 0][0 0 0 0 0][0 1 1 1 0][0 0 0 0 0][0 0 0 0 0]]

从本例中可以看到,只有当核 kernel 的中心点位于 img 中的 img[2,1]、img[2,2]、img[2,3]处时,核才完全处于前景图像中。

所以,在腐蚀结果图像中,只有这三个点的值为 1,其余点的值皆为 0。

示例2:使用函数 cv2.erode()完成图像腐蚀

代码如下:

import cv2
import numpy as np
o=cv2.imread("fushi.bmp",cv2.IMREAD_UNCHANGED)
#创建结构元素
kernel = np.ones((7,7),np.uint8)
#腐蚀
erosion = cv2.erode(o,kernel)
cv2.imshow("orriginal",o)
cv2.imshow("erosion",erosion)
cv2.waitKey()
cv2.destroyAllWindows()

运行效果:
左图是原始图像,右图是腐蚀处理结果。从图中可
以看到,腐蚀操作将原始图像内的毛刺腐蚀掉了。
在这里插入图片描述

调节函数 cv2.erode()的参数,观察不同参数控制下的图像腐蚀效果
使用参数 iterations = 5 对函数 cv2.erode()的迭代次数进行控制,让其迭代 5 次。

代码如下:

import cv2
import numpy as np
o=cv2.imread("fushi.bmp",cv2.IMREAD_UNCHANGED)
#创建结构元素
kernel = np.ones((7,7),np.uint8)
#腐蚀
erosion = cv2.erode(o,kernel,iterations = 5)
cv2.imshow("orriginal",o)
cv2.imshow("erosion",erosion)
cv2.waitKey()
cv2.destroyAllWindows()

从结果中可以看出迭代的次数越多,腐蚀的越明显
在这里插入图片描述

更多参数调整测试可以自己多动手试试

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/76482.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

No111.精选前端面试题,享受每天的挑战和学习

文章目录 map和foreach的区别在组件中如何获取vuex的action对象中的属性怎么去获取封装在vuex的某个接口数据有没有抓包过?你如何跟踪某一个特定的请求?比如一个特定的URL,你如何把有关这部分的url数据提取出来?1. 使用网络抓包工…

selenium-web自动化测试

一、selenium环境部署 1.准备chrome浏览器(其他浏览器也行) 2.准备chrome驱动包 步骤一:查看自己的谷歌浏览器版本(浏览器版本和驱动版本一定要对应) 步骤二:下载对应的驱动包, 下载路径 : ChromeDriver - WebDriver for Chrom…

Mybatis实现JsonObject对象与JSON之间交互

项目中使用PostGresql数据库进行数据存储,表中某字段为Json类型,用于存储Json格式数据。PG数据库能够直接存储Json算是一大特色,很多特定情境下使用直接存储Json字段数据能够大量节省开发时间,提高后台数据查询和转换效率。 1、基…

中国中医中药元宇宙 中药材价格缘何“狂飙”

◇相比去年同期,有超200个常规品种涨幅高于50%,25个常用大宗药材涨幅超200%,个别品种甚至涨价4至9倍 ◇在中药材价格普遍高涨的情况下,部分市场仓库库存数量也较多,出现囤积居奇倾向 ◇“不少游资和热钱涌入中药材市场…

【前端实习生备战秋招】—HTML 和 CSS面试题总结(二)

【前端实习生备战秋招】—HTML 和 CSS面试题总结&#xff08;二&#xff09; 1.有哪些方式可以对一个 DOM 设置它的 CSS 样式&#xff1f; 外部样式表&#xff0c;引入一个外部 css 文件内部样式表&#xff0c;将 css 代码放在 <head> 标签内部内联样式&#xff0c;将 c…

Flex弹性盒子的项目属性

最近在写项目时用到了弹性盒子的项目属性&#xff0c;记录一下&#xff0c;以后用到继续扩充 <div class"concern-data"><div><img src"https://meituan.thexxdd.cn/lvyou/assets/pinglun-fc62482a.svg" alt""><span>1&…

软件外包开发的GO语言特点

Go语言&#xff08;也称为Golang&#xff09;是由Google开发的一种编程语言。它具有许多特点&#xff0c;使其成为许多项目范围的优秀选择。Go语言适用于需要高性能、并发和简洁易读的项目&#xff0c;特别是面向网络和分布式应用的项目。今天和大家分享项目的特点及适用的项目…

spark-sql数据重复之File Output Committer问题

前言 我们先来回顾下之前介绍过的三种Committer&#xff1a;FileOutputCommitter V1、FileOutputCommitter V2、S3A Committer&#xff0c;其基本代表了整体的演进趋势。 核心代码讲解详细参照&#xff1a;Spark CommitCoordinator 保证数据一致性 OutputCommitter commitTask…

python——案例六:判断字符串的长度

案例六&#xff1a;判断字符串的长度str"Study"print(len(str))#输出结果如下&#xff1a; #5

HTML|计算机网络相关

1.三次握手 第一次握手&#xff1a;客户端首先向服务端发送请求。 第二次握手&#xff1a;服务端在接收到客户端发送的请求之后&#xff0c;需要告诉客户端已收到请求。 第三次握手&#xff1a;客户端在接收到服务端发送的请求和确认信息之后&#xff0c;同样需要告诉服务端已…

软件安全测试和渗透测试的区别在哪?安全测试报告有什么作用?

软件安全测试和渗透测试在软件开发过程中扮演着不同的角色&#xff0c;同时也有不同的特点和目标。了解这些区别对于软件开发和测试人员来说非常重要。本文将介绍软件安全测试和渗透测试的区别&#xff0c;以及安全测试报告在软件开发和测试过程中的作用。 一、 软件安全测试和…

python 常见数据类型和方法

不可变数据类型 不支持直接增删改 只能查 str 字符串 int 整型 bool 布尔值 None None型特殊常量 tuple 元组(,,,)回到顶部 可变数据类型&#xff0c;支持增删改查 list 列表[,,,] dic 字典{"":"","": ,} set 集合("",""…

Windows下安装Spark(亲测成功安装)

Windows下安装Spark 一、Spark安装前提1.1、JDK安装&#xff08;version&#xff1a;1.8&#xff09;1.1.1、JDK官网下载1.1.2、JDK网盘下载1.1.3、JDK安装 1.2、Scala安装&#xff08;version&#xff1a;2.11.12&#xff09;1.2.1、Scala官网下载1.2.2、Scala网盘下载1.2.3、…

SQL-每日一题【1164. 指定日期的产品价格】

题目 产品数据表: Products 写一段 SQL来查找在 2019-08-16 时全部产品的价格&#xff0c;假设所有产品在修改前的价格都是 10 。 以 任意顺序 返回结果表。 查询结果格式如下例所示。 示例 1: 解题思路 1.题目要求我们查找在 2019-08-16 时全部产品的价格&#xff0c;假设所…

c语言——求n之内的素数和

//求n之内的素数和 //列如&#xff1a;2、3、5等 #include<stdio.h> #include<math.h> int main() {int i,j,k,n0;scanf("%d",&n);for(i2;i<n;i){k(int)sqrt(i);for(j2;j<k;j)if(i%j0)break;if(j>k){printf("%d,",i);n;if(n%50)p…

安防监控国标GB28181平台EasyGBS视频快照无法显示是什么原因?如何解决?

安防视频监控国标视频云服务EasyGBS支持设备/平台通过国标GB28181协议注册接入&#xff0c;并能实现视频的实时监控直播、录像、检索与回看、语音对讲、云存储、告警、平台级联等功能。平台部署简单、可拓展性强&#xff0c;支持将接入的视频流进行全终端、全平台分发&#xff…

Ansible 的脚本 --- playbook 剧本

playbooks 本身由以下各部分组成 &#xff08;1&#xff09;Tasks&#xff1a;任务&#xff0c;即通过 task 调用 ansible 的模板将多个操作组织在一个 playbook 中运行 &#xff08;2&#xff09;Variables&#xff1a;变量 &#xff08;3&#xff09;Templates&#xff1a;模…

用msys2安装verilator并用spinal进行仿真

一 参考 SpinalHDL 开发环境搭建一步到位(图文版) - 极术社区 - 连接开发者与智能计算生态 (aijishu.com)https://aijishu.com/a/1060000000255643Setup and installation of Verilator — SpinalHDL documentation

无人机调试笔记——常见参数

无人机的PID调试以及速度相关参数 1、Multicopter Position Control主要是用来设置无人机的各种速度和位置参数。调试顺序是先调试内环PID&#xff0c;也就是无人机的速度闭环控制&#xff0c;确认没有问题后再进行外环位置控制&#xff0c;也就是定点模式控制。 2、调试的时…

Redis未授权访问漏洞

Redis未授权访问漏洞 一、未授权访问漏洞概述、二、Redis未授权访问特征三、Redis常用命令四、Redis历史漏洞4.1、Redis未授权访问4.2、Redis主从复制RCE 五、Reids未授权访问利用5.1、写webshell5.2、写定时任务反弹shell 一、未授权访问漏洞概述、 未授权访问漏洞可以理解为需…