WebRTC 之音视频同步

在网络视频会议中, 我们常会遇到音视频不同步的问题, 我们有一个专有名词 lip-sync 唇同步来描述这类问题,当我们看到人的嘴唇动作与听到的声音对不上的时候,不同步的问题就出现了

而在线会议中, 听见清晰的声音是优先级最高的, 人耳对于声音的延迟是很敏感的

根据 T-REC-G.114-200305 中的描述

  • 大于~280ms 有些用户就会不满意
  • 大于~380ms 多数用户就会不满意
  • 大于~500ms 几乎所有用户就会不满意

我们就尽量使得声音的延迟在 280 ms 之内,这是解决 lip-sync 问题的前提, 声音不好的严重程序超过音视频不同步。

我们可以定义一个 sync_diff 值 来表示音频帧和视频帧之间的时间差

  • 正值表示音频领先于视频
  • 负值表示音频落后于视频

ITU 对此给出以下的阈值:

  • 不可感知 Undetectability (-100ms, +25ms)
  • 可感知 Detectability: (-125ms, +45ms)
  • 可接受 Acceptability: (–185ms, +90 ms)
  • 影响用户 Impact user experience (-∞, -185ms) ∪ (+90ms,∞)

(ITU-R BT.1359-1, Relative Timing of Sound and Vision for Broadcasting" 1998. Retrieved 30 May 2015)

当我们在播放一个视频帧及对应的音频帧的时候,要计算一下这个 sync_diff

sync_diff = audio_frame_time - video_frame_time

如果这个 sync_diff 大于 90ms, 也就是音频包到得过早,就会有音视频不同步的问题 - 声音听到了,嘴巴没跟上.

如果这个 sync_diff 小于 -185ms, 也就是视频包到得过早,就会有音视频不同步的问题 - 嘴巴在动,声音没跟上.

不同步的原因

lip sync 1

这个问题的原因主要在于音频的采集, 编码,传输, 解码, 播放与视频的采集,编码,传输,解码以及渲染一般是分开进行的,因为音频和视频采集自不同的设备,即它们的来源不同,在网络上传输也会有延迟,也由不同的设备进行播放,这样如果在接收方不采取措施进行时间同步,就会极有可能看到口型和听到的声音对不上的情况。

由此派生出 3 个小问题:

  1. 如何将来自同一个人或设备的多路 audio 及 video stream关联起来?
  2. 如何将 RTP 中的时间戳 timestamp 映射到发送方的音视频采集时间
  3. 如何调整音频或者视频帧的播放时间,让它们怎么之间相对同步?

解决方案

1. 如何将来自同一个人或设备的音视频流关联起来?

对于多媒体会话,每种类型的媒体(例如音频或视频)一般会在单独的 RTP 会话中发送,发送方会在 RTCP SDES 消息中指明
接收方通过 CNAME 项关联要同步的RTP流, 而这个 CNAME 包含在发送方所发送的 RTCP SDES 中

SDES 数据包包含常规包头,有效负载类型为 202,项目计数等于数据包中 SSRC/CSRC 块的数量,后跟零个或多个 SSRC/CSRC 块,其中包含有关特定 SSRC 或 CSRC,每个都与 32 位边界对齐。

0               1               2               30 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+|V=2|P|    SC   |  PT=SDES=202  |            length L           |+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+|                          SSRC/CSRC_1                          |+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+|                           SDES items                          ||                              ...                              |+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+|                          SSRC/CSRC_2                          |+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+|                           SDES items                          ||                              ...                              |+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+

CNAME 项在每个 SDES 数据包中都是必需的,而 SDES 数据包又是每个复合 RTCP 数据包中的必需部分。

与 SSRC 标识符一样,CNAME 必须与其他会话参与者的 CNAME 不同。 但 CNAME 不应随机选择 CNAME 标识符,而应允许个人或程序通过 CNAME 内容来定位其来源。

0               1               2               30 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+|    CNAME=1    |     length    | user and domain name         ...+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

例如 Alice 向外发送一路音频流,一路视频流, 这两路流会使用不同的 SSRC, 但是在其所发送的 RTCP SDES 消息会使用相同的 CNAME.

  • RTP SSRC 1 ~ CNAME 1
  • RTP SSRC 2 ~ CNAME 1

2. 同步的时间如何计算

来自同一个终端用户的音频和视频, 在编码发送的 RTP 包中有一个 timestamp, 这个时间戳表示媒体流的捕捉时间。
同时, 作为发送者也会发送 RTCP Sender Report, 其中包含发送的 RTP timestamp 和 NTP timestamp 的映射关系,这样我们在接收方就可以把 RTP 包里的

lip sync flow

对于每个 RTP 流,发送方定期发出 RTCP SR, 其中包含一对时间戳:

NTP 时间戳以及与该 RTP 流关联的相应 RTP 时间戳。

这对时间戳传达每个媒体流的 NTP 时间和 RTP 时间之间的关系。

先回顾一下 RTP packet 和 RTCP sender report

  • RTP 包结构
0                   1                   2                   30 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+|V=2|P|X|  CC   |M|     PT      |       sequence number         |+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+|                           timestamp                           |+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+|           synchronization source (SSRC) identifier            |+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+|            contributing source (CSRC) identifiers             ||                             ....                              |+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  • RTCP Sender Report 结构
0                   1                   2                   30 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+header |V=2|P|    RC   |   PT=SR=200   |             length            |+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+|                         SSRC of sender                        |+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+sender |              NTP timestamp, most significant word             |info   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+|             NTP timestamp, least significant word             |+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+|                         RTP timestamp                         |+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+|                     sender's packet count                     |+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+|                      sender's octet count                     |+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+report |                 SSRC_1 (SSRC of first source)                 |block  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+1    | fraction lost |       cumulative number of packets lost       |+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+|           extended highest sequence number received           |+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+|                      interarrival jitter                      |+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+|                         last SR (LSR)                         |+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+|                   delay since last SR (DLSR)                  |+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+report |                 SSRC_2 (SSRC of second source)                |block  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+2    :                               ...                             :+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+|                  profile-specific extensions                  |+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

通过 NTP timestamp 和 RTP timestamp 之间的映射, 我们可以知道 audio 包的时间和 video 包的时间。

具体的计算可以参见 WebRTC 的 RtpToNtpEstimator 类, 它将收到的若干 SR 中的 NTP time 和 RTP timestamp 保存下来,然后 应用最小二乘法来估算后续 RTP timestamp 所对应的 NTP timestamp, 大致为用最近 N=20 个 RTCP SR 包的 ntp timestamp 和 rtp timestamp 的构造出线性关系 y = ax + b, 通过最小二乘法来计算收到的 RTP 包对应的 ntp timestamp.

// Converts an RTP timestamp to the NTP domain.
// The class needs to be trained with (at least 2) RTP/NTP timestamp pairs from
// RTCP sender reports before the convertion can be done.
class RtpToNtpEstimator {public://...enum UpdateResult { kInvalidMeasurement, kSameMeasurement, kNewMeasurement };// Updates measurements with RTP/NTP timestamp pair from a RTCP sender report.UpdateResult UpdateMeasurements(NtpTime ntp, uint32_t rtp_timestamp);// Converts an RTP timestamp to the NTP domain.// Returns invalid NtpTime (i.e. NtpTime(0)) on failure.NtpTime Estimate(uint32_t rtp_timestamp) const;// Returns estimated rtp_timestamp frequency, or 0 on failure.double EstimatedFrequencyKhz() const;private:// Estimated parameters from RTP and NTP timestamp pairs in `measurements_`.// Defines linear estimation: NtpTime (in units of 1s/2^32) =//   `Parameters::slope` * rtp_timestamp + `Parameters::offset`.struct Parameters {double slope;double offset;};// RTP and NTP timestamp pair from a RTCP SR report.struct RtcpMeasurement {NtpTime ntp_time;int64_t unwrapped_rtp_timestamp;};void UpdateParameters();int consecutive_invalid_samples_ = 0;std::list<RtcpMeasurement> measurements_;absl::optional<Parameters> params_;mutable RtpTimestampUnwrapper unwrapper_;
};

3. 调整播放和渲染时间

一般我们会以 audio 为主, video 向 audio 靠拢, 两者时间一致也就会达到 lip sync 音视频同步

  1. audio 包先来, video 包后来: audio 包放在 jitter buffer 时等一会儿, 但是这个时间是有限的, 音频的流畅是首先要保证的, 视频跟不上可以降低视频的码率
  2. video 包先来, audio 包后来: video 包要等 audio 包来, 这是为了让音视频同步要付出的代价

一般以音频为主流 master stream,视频为从流 slave stream。 一般方法是接收方维护音频流的缓冲区的管理,并通过将视频 RTP 时间戳转换为正确从属于音频流的时间戳来调整视频流的播放。

当带有RTP时间戳 RTPv的视频帧到达接收器时,接收器通过四个步骤将RTP时间戳 RTPv 映射到视频设备时间戳VTB( Video Time Base),如图所示。

  1. 使用 Video RTCP SR 中的 RTP/NTP 时间戳对建立的映射,将视频 RTP 时间戳 RTPv 映射到发送方 NTP 时间。

  2. 根据该 NTP 时间戳,使用 Audio RTCP SR 中的 RTP/NTP 时间戳对建立的映射,计算来自发送方的相应音频 RTPa 时间戳。
    此时,视频RTP时间戳被映射到音频RTP 包的相同时间基准。

  3. 根据该音频 RTP 时间戳,使用卡尔曼滤波的方法计算音频设备时间基准中的相应时间戳。 结果是音频设备时间基准 ATB(Audio Time Base) 中的时间戳。

  4. 根据 ATB,使用偏移量 AtoV 计算视频设备时基 VTB 中的相应时间戳。

接收方需要确保带有 RTP 时间戳 RTPv 的视频帧使用所计算出的发送方视频设备时间基准 VTB 播放。

AtoV = V_time - A_Time/(audio sample rate)

注:

  • AtoV: 音频相较视频的偏移量
  • ATB: Audio device Time Base 音频设备的时间基准
  • VTB: Video device Time Base 视频设备的时间基准

具体方法可以参见 https://www.ccexpert.us/video-conferencing/using-rtcp-for-media-synchronization.html)

WebRTC 的做法原理上差不多,实现略有不同,可以参见 WebRTC 的源代码 StreamSynchronization 类和 RtpStreamsSynchronizer 类

大致上它会计算出 video 的延迟

current_delay_ms = max(min_playout_delay_ms, jitter_delay_ms + decode_time _ms + render_delay_ms)

然后再计算视频相对于音频的延迟 relative_delay_ms,

  • 如果它大于0, 视频比音频慢,减小视频延迟(主要是调整 jitter buffer delay),或者是增大音频延迟, 取决于阈值 base_target_delay_ms
  • 如果它小于0, 音频比视频慢,减小音频延迟,或者是增大视频延迟, 取决于阈值base_target_delay_ms

base_target_delay_ms 的比较逻辑参见StreamSynchronization::ComputeDelays,

if (diff_ms > 0) {// The minimum video delay is longer than the current audio delay.// We need to decrease extra video delay, or add extra audio delay.if (video_delay_.extra_ms > base_target_delay_ms_) {// We have extra delay added to ViE. Reduce this delay before adding// extra delay to VoE.video_delay_.extra_ms -= diff_ms;audio_delay_.extra_ms = base_target_delay_ms_;} else {  // video_delay_.extra_ms > 0// We have no extra video delay to remove, increase the audio delay.audio_delay_.extra_ms += diff_ms;video_delay_.extra_ms = base_target_delay_ms_;}} else {  // if (diff_ms > 0)// The video delay is lower than the current audio delay.// We need to decrease extra audio delay, or add extra video delay.if (audio_delay_.extra_ms > base_target_delay_ms_) {// We have extra delay in VoiceEngine.// Start with decreasing the voice delay.// Note: diff_ms is negative; add the negative difference.audio_delay_.extra_ms += diff_ms;video_delay_.extra_ms = base_target_delay_ms_;} else {  // audio_delay_.extra_ms > base_target_delay_ms_// We have no extra delay in VoiceEngine, increase the video delay.// Note: diff_ms is negative; subtract the negative difference.video_delay_.extra_ms -= diff_ms;  // X - (-Y) = X + Y.audio_delay_.extra_ms = base_target_delay_ms_;}
}

更多细节在 WebRTC 的代码中

  • class StreamSynchronization
  • class RtpStreamsSynchronizer

通过StreamSynchronization::ComputeDelays计算出音频和视频的相对延迟,如果相对延迟很小( < 30ms), 则无需调整音视频的播放时间,如果相对延迟很大, 则以 80ms 的幅度进行逐步调整。 与传统的只调视频延迟,不调音频延迟, WebRTC 会两边都调点,使得音视频的时间彼此靠近,前提是音频的延迟是在上面提到的可接受范围之内。

参考资料

  • https://www.ciscopress.com/articles/article.asp?p=705533&seqNum=6
  • https://www.ccexpert.us/video-conferencing/using-rtcp-for-media-synchronization.html
  • https://testrtc.com/docs/how-do-you-find-lip-sync-issues-in-webrtc/
  • https://en.wikipedia.org/wiki/Audio-to-video_synchronization
  • https://www.simplehelp.net/2018/05/29/how-to-fix-out-of-sync-audio-video-in-an-mkv-mp4-or-avi/
    *RFC6051: Rapid Synchronisation of RTP Flows

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/76947.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【安装】阿里云轻量服务器安装Ubuntu图形化界面(端口号/灰屏问题)

阿里云官网链接 https://help.aliyun.com/zh/simple-application-server/use-cases/use-vnc-to-build-guis-on-ubuntu-18-04-and-20-04 网上搜了很多教程&#xff0c;但是我没在界面看到有vnc连接&#xff0c;后面才发现官网有教程。 其实官网很详细了&#xff0c;不过这里还是…

18、springboot默认的配置文件及导入额外配置文件

springboot默认的配置文件及导入额外配置文件 ★ Spring Boot默认加载的配置文件&#xff1a; (1) 类加载路径&#xff08;resources目录&#xff09;application.properties|yml &#xff08;相当于JAR包内&#xff09;optional: classpath:/ &#xff08;2&#xff09;类加…

钉钉对接打通金蝶云星空获取流程实例列表详情(宜搭)接口与其他应收单接口

钉钉对接打通金蝶云星空获取流程实例列表详情&#xff08;宜搭&#xff09;接口与其他应收单接口 对接系统钉钉 钉钉&#xff08;DingTalk&#xff09;是阿里巴巴集团专为中国企业打造的免费沟通和协同的多端平台&#xff0c;提供PC版&#xff0c;Web版和手机版&#xff0c;有考…

Alchemy Catalyst 2023 crack

Alchemy Catalyst 2023 crack Alchemy CATALYST是一个可视化本地化环境&#xff0c;支持本地化工作流程的各个方面。它帮助组织加快本地化进程&#xff0c;比竞争对手更快地进入新市场&#xff0c;并为他们创造新的收入机会。 创建全球影响力 高质量的产品和服务翻译对跨国组织…

网关gateway的简介和搭建过程

目录 1.什么是网关和网关的应用情景 2.网关是如何演化来的&#xff0c;在微服务中有什么作用&#xff1f; 3.网关的基本功能 4.Spring Cloud gateway的发展史 5.和网关类似的功能组件&#xff1a; 6.为什么微服务当中一定要有网关 7.微服务网关的优点 8.gateway的搭建过程…

C#核心知识回顾——19.插入排序

1.插入排序的基本原理 871542639 两个区域 排序区 未排序区 用一个索引值做分水岭 未排序区元素 与排序区元素比较 插入到合适位置 直到未排序区清空 int[] arr { 8, 6, 7, 2, 9, 4 };//第一步//能取出未排序区…

【MySQL】MySQL 数据库的介绍与操作

目录 1. 登录 MySQL 数据库 2. MySQL 介绍 3. 操作数据库 1、创建数据库 2、删除数据库 3、插入数据 4、查找 5、修改数据库 4. 表的操作 1、创建表 2、查看表 3、修改表 4、删除表 写在最后&#xff1a; 1. 登录 MySQL 数据库 指令&#xff1a; mysql -h 127.…

c51单片机16个按键密码锁源代码(富proteus电路图)

注意了&#xff1a;这个代码你是没法直接运行的&#xff0c;但是如果你看得懂&#xff0c;随便改一改不超过1分钟就可以用 #include "reg51.h" #include "myheader.h" void displayNumber(unsigned char num) {if(num1){P10XFF;P10P11P14P15P160;}else if…

大数据概论

1、大数据概念 大数据(Big Data): 指无法在一定时间范围内用常规软件工具进行捕捉、管理和处理的数据集合&#xff0c;是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力的海量、高增长率和多样化的信息资产 大数据主要解决&#xff0c;海量数据的采集、存储和分…

数据结构10 -查找_树表查找

创建二叉搜索树 二叉搜索树 二叉搜索树是有数值的了&#xff0c;二叉搜索树是一个有序树。 若它的左子树不空&#xff0c;则左子树上所有结点的值均小于它的根结点的值&#xff1b; 若它的右子树不空&#xff0c;则右子树上所有结点的值均大于它的根结点的值&#xff1b; 它…

SQL92 SQL99 语法 Oracle 、SQL Server 、MySQL 多表连接、Natural 、USING

SQL92 VS SQL 99 语法 92语法 内连接 from table1&#xff0c; table2 where table1.col table2.col 外连接 放在 从表 左连接&#xff1a; from table1&#xff0c; table2 where table1.col table2.col() 右连接&#xff1a; from table1&#xff0c; table2 where table…

解决layui框架的radio属性不显示失效问题

废话不多说 直接开干&#xff01; 1.问题描述使用layui时 2.不显示问题 纠结半天 忘记插件要刷新 步骤 3、解决方法就是&#xff1a;使用form.render() 刷新请求的界面 <script type"text/javascript">//刷新界面 所有元素layui.use(form,function(){var form …

SpringBoot 日志文件

一、日志的作用 日志是程序的重要组成部分&#xff0c;想象一下&#xff0c;如果程序报错了&#xff0c;不让你打开控制台看日志&#xff0c;那么你能找到报错的原因吗 答案是否定的&#xff0c;写程序不是买彩票&#xff0c;不能完全靠猜&#xff0c;因此日志对于我们来说&a…

MySQL语法2

DQL语句介绍 DQL是数据查询语言&#xff0c;用来查询数据库中表的记录 DQL-基本查询语句 SELECT 字段列表 FROM 表名列表 WHERE 条件列表 GROUP BY 分组字段列表 HAVIMG 分组后条件列表 ORDER BY 排列字段列表 LIMIT 分页参数 讲解过程&#xff1a;基本查询、条件查询…

【C语言进阶篇】关于指针的八个经典笔试题(图文详解)

&#x1f3ac; 鸽芷咕&#xff1a;个人主页 &#x1f525; 个人专栏:《C语言初阶篇》 《C语言进阶篇》 ⛺️生活的理想&#xff0c;就是为了理想的生活! 文章目录 &#x1f4cb; 前言&#x1f4ac; 指针笔试题&#x1f4ad; 笔试题 1&#xff1a;✅ 代码解析⁉️ 检验结果&…

Delphi Architect Crack,部署支持Swagger

Delphi Architect Crack,部署支持Swagger 单一代码库-用更少的编码工作为所有主要平台创建应用程序。写一次&#xff0c;到处编译。 Windows-使用最新的用户界面控件、WinRT API和HighDPI相关功能&#xff0c;使Windows的VCL应用程序现代化。 远程桌面-使用改进的VCL和IDE远程桌…

【ONE·Linux || 基础IO(二)】

总言 文件系统与动静态库相关介绍。 文章目录 总言2、文件系统2.1、背景知识2.2、磁盘管理2.2.1、磁盘文件系统图2.2.2、inode与文件名 2.3、软硬链接 3、动静态库3.1、站在编写库的人的角度&#xff1a;如何写一个库&#xff1f;3.1.1、静态库制作3.1.3、动态库制作 3.2、站在…

第一百二十二天学习记录:C++提高:STL-vector容器(上)(黑马教学视频)

vector基本概念 功能&#xff1a; vector数据结构和数组非常相似&#xff0c;也称为单端数组 vector与普通数组区别&#xff1a; 不同之处在于数组是静态空间&#xff0c;而vector可以动态扩展 动态扩展&#xff1a; 并不是在原空间之后续接新的空间&#xff0c;而是找更大的内…

【Spring Cloud 五】OpenFeign服务调用

这里写目录标题 系列文章目录背景一、OpenFeign是什么Feign是什么Feign的局限性 OpenFeign是什么 二、为什么要有OpenFeign三、如何使用OpenFeign服务提供者order-servicepom文件yml配置文件启动类实体ParamController 服务消费者user-servicepom文件yml配置文件启动类接口类Us…

vue3—SCSS的安装、配置与使用

SCSS 安装 使用npm安装scss&#xff1a; npm install sass sass-loader --save-dev 配置 配置到全局 &#x1f31f;附赠代码&#x1f31f; css: {preprocessorOptions: {scss: {additionalData:import "./src/Function/Easy_I_Function/Echarts/ToSeeEcharts/utill.…