【云原生】K8S二进制搭建二:部署CNI网络组件

目录

  • 一、K8S提供三大接口
    • 1.1容器运行时接口CRI
    • 1.2云原生网络接口CNI
    • 1.3云原生存储接口CSI
  • 二、Flannel网络插件
    • 2.1K8S中Pod网络通信
    • 2.2Overlay Network
    • 2.3VXLAN
    • 2.4Flannel
  • 三、Flannel udp 模式的工作原理
    • 3.1ETCD 之 Flannel 提供说明
  • 四、vxlan 模式
    • 4.1Flannel vxlan 模式的工作原理
  • 五、部署 flannel
    • 5.1node01节点上操作
    • 5.2 在 master01 节点上操作
  • 六、Calico
    • 6.1K8s组网方案对比
    • 6.2Calico 工作原理
    • 6.3部署 Calico

一、K8S提供三大接口

在这里插入图片描述

1.1容器运行时接口CRI

解决了什么问题?
容器镜像(带有应用程序规范的文件)必须以标准化,安全和隔离的方式启动

  • 标准化,因为无论它们在何处运行,都需要标准的操作规则。

  • 安全,因为你不希望任何不应该访问它的人,对它操作。

  • 隔离,因为你不希望应用程序影响其他应用,或受其他应用程序的影响(例如,在同一节点的其他应用程序崩溃导致自身故障)。隔离基本上起保护作用。此外,还需要为应用程序提供资源限制,例如 CPU、存储和内存

工具

  • docker
  • containerd
  • podman
  • cri-0

1.2云原生网络接口CNI

云原生网络是什么

  • 在现有网络之上创建一个专门用于应用程序通信的虚拟网络,称为覆盖网络( overlay network )。

解决了什么问题

  • 提供一个专用的通信网络,将独立的容器彼此私下通信
  • 使用软件来控制、检查和修改数据流。管理和保护容器间的连接。满足各容器之间的隔离要求
  • 如果向扩展容器网络和网络策略,云原生网络的可编程性和声明性使这成为可能。

如何解决

  • 使用Flannel、calico、cilium等工具

1.3云原生存储接口CSI

什么是存储

  • 存储,即存放应用程序持久数据的位置,通常称为持久卷。能够轻松访问持久卷,对于应用程序可靠运行至关重要。通常,当我们说持久数据时,是指想要确保我们在应用重新启动时不会消失的任何数据。

解决了什么问题

  • 要存储数据,就要需要硬件(具体来说是磁盘)。磁盘与其他任何硬件一样,都受基础结构约束。这是第一个挑战

  • 第二个挑战是,存储接口。以前,每个基础架构都有自己的存储解决方案和自己的接口,这使可移植性变得非常困难。

  • 第三个挑战是,现在的应用为了受益于云的弹性,必须以自动化方式配置存储。

  • 云原生存储是针对这种新的云原生挑战量身定制的

如何解决的

云原生存储工具,可帮助

a)为容器提供云原生存储选项

b)标准化容器与存储提供者之间的接口

c)通过备份和还原操作提供数据保护

工具

  • ceph
  • nfs
  • gfs
  • s3

二、Flannel网络插件

在这里插入图片描述

2.1K8S中Pod网络通信

在这里插入图片描述

Pod 内容器与容器之间的通信

在同一个 Pod 内的容器(Pod 内的容器是不会跨宿主机的)共享同一个网络命令空间,相当于它们在同一台机器上一样,可以用
localhost 地址访问彼此的端口。

同一个 Node 内 Pod 之间的通信

每个 Pod 都有一个真实的全局 IP 地址,同一个 Node 内的不同 Pod 之间可以直接采用对方 Pod 的 IP 地址进行通信,Pod1 与 Pod2 都是通过 Veth 连接到同一个 docker0 网桥,网段相同,所以它们之间可以直接通信

不同 Node 上 Pod 之间的通信

Pod 地址与 docker0 在同一网段,docker0 网段与宿主机网卡是两个不同的网段,且不同 Node 之间的通信只能通过宿主机的物理网卡进行。 要想实现不同 Node 上 Pod 之间的通信,就必须想办法通过主机的物理网卡 IP 地址进行寻址和通信。因此要满足两个条件:Pod 的 IP 不能冲突;将 Pod 的 IP 和所在的 Node 的 IP 关联起来,通过这个关联让不同 Node 上 Pod 之间直接通过内网 IP 地址通信。

2.2Overlay Network

叠加网络,在二层或者三层基础网络上叠加的一种虚拟网络技术模式,该网络中的主机通过虚拟链路隧道连接起来(类似于VPN)。

2.3VXLAN

将源数据包封装到UDP中,并使用基础网络的IP/MAC作为外层报文头进行封装,然后在以太网上传输,到达目的地后由隧道端点解封装并将数据发送给目标地址。

2.4Flannel

Flannel 的功能是让集群中的不同节点主机创建的 Docker 容器都具有全集群唯一的虚拟 IP 地址。 Flannel 是
Overlay 网络的一种,也是将 TCP 源数据包封装在另一种网络包里面进行路由转发和通信,目前支持 udp、vxlan、 host-GW 3种数据转发方式。

三、Flannel udp 模式的工作原理

  • 数据从 node01 上 Pod 的源容器中发出后,经由所在主机的 docker0 虚拟网卡转发到 flannel.1 虚拟网卡,flanneld 服务监听在 flannel.1 虚拟网卡的另外一端。
  • Flannel 通过 Etcd 服务维护了一张节点间的路由表。源主机 node01 的 flanneld 服务将原本的数据内容封装到 UDP 中后根据自己的路由表通过物理网卡投递给目的节点 node02 的 flanneld 服务,数据到达以后被解包,然后直接进入目的节点的 flannel.1 虚拟网卡,之后被转发到目的主机的 docker0 虚拟网卡,最后就像本机容器通信一样由 docker0 转发到目标容器。

3.1ETCD 之 Flannel 提供说明

  • 存储管理Flannel可分配的IP地址段资源
  • 监控 ETCD 中每个 Pod 的实际地址,并在内存中建立维护 Pod 节点路由表
  • 由于 udp 模式是在用户态做转发,会多一次报文隧道封装,因此性能上会比在内核态做转发的 vxlan 模式差。

四、vxlan 模式

在这里插入图片描述

vxlan 是一种overlay(虚拟隧道通信)技术,通过三层网络搭建虚拟的二层网络,跟 udp 模式具体实现不太一样:

  • (1)udp模式是在用户态实现的,数据会先经过tun网卡,到应用程序,应用程序再做隧道封装,再进一次内核协议栈,而vxlan是在内核当中实现的,只经过一次协议栈,在协议栈内就把vxlan包组装好
  • (2)udp模式的tun网卡是三层转发,使用tun是在物理网络之上构建三层网络,属于ip in udp,vxlan模式是二层实现, overlay是二层帧,属于mac in udp
  • (3)vxlan由于采用mac in udp的方式,所以实现起来会涉及mac地址学习,arp广播等二层知识,udp模式主要关注路由

4.1Flannel vxlan 模式的工作原理

  • vxlan在内核当中实现,当数据包使用vxlan设备发送数据时,会打上vlxan的头部信息,在发送出去,对端解包,flannel.1网卡把原始报文发送到目的服务器。

五、部署 flannel

5.1node01节点上操作

#上传 cni-plugins-linux-amd64-v0.8.6.tgz 和 flannel.tar 到 /opt 目录中
cd /opt/
docker load -i flannel.tarmkdir /opt/cni/bin
tar zxvf cni-plugins-linux-amd64-v0.8.6.tgz -C /opt/cni/bin

在这里插入图片描述

5.2 在 master01 节点上操作

#上传 kube-flannel.yml 文件到 /opt/k8s 目录中,部署 CNI 网络
cd /opt/k8s
kubectl apply -f kube-flannel.yml kubectl get pods -n kube-system
NAME                    READY   STATUS    RESTARTS   AGE
kube-flannel-ds-hjtc7   1/1     Running   0          7skubectl get nodes
NAME            STATUS   ROLES    AGE   VERSION
192.168.80.11   Ready    <none>   81m   v1.20.11

在这里插入图片描述
在这里插入图片描述

六、Calico

6.1K8s组网方案对比

flannel方案

需要在每个节点上把发向容器的数据包进行封装后,再用隧道将封装后的数据包发送到运行着目标Pod的node节点上。目标node节点再负责去掉封装,将去除封装的数据包发送到目标Pod上。数据通信性能则大受影响。

calico方案

Calico不使用隧道或NAT来实现转发,而是把Host当作Internet中的路由器,使用BGP同步路由,并使用iptables来做安全访问策略,完成跨Host转发来。

6.2Calico 工作原理

  • Calico 是通过路由表来维护每个 pod 的通信。Calico 的 CNI 插件会为每个容器设置一个 veth pair 设备, 然后把另一端接入到宿主机网络空间,由于没有网桥,CNI 插件还需要在宿主机上为每个容器的 veth pair 设备配置一条路由规则,用于接收传入的IP包。

  • 有了这样的 veth pair 设备以后,容器发出的IP包就会通过 veth pair 设备到达宿主机,然后宿主机根据路由规则的下一跳地址, 发送给正确的网关,然后到达目标宿主机,再到达目标容器。

  • 这些路由规则都是 Felix 维护配置的,而路由信息则是 Calico BIRD 组件基于 BGP 分发而来。calico 实际上是将集群里所有的节点都当做边界路由器来处理,他们一起组成了一个全互联的网络,彼此之间通过 BGP 交换路由,这些节点我们叫做 BGP Peer。

  • 目前比较常用的时flannel和calico,flannel的功能比较简单,不具备复杂的网络策略配置能力,calico是比较出色的网络管理插件,但具备复杂网络配置能力的同时,往往意味着本身的配置比较复杂,所以相对而言,比较小而简单的集群使用flannel,考虑到日后扩容,未来网络可能需要加入更多设备,配置更多网络策略,则使用calico更好。

6.3部署 Calico

在 master01 节点上操作

#上传 calico.yaml 文件到 /opt/k8s 目录中,部署 CNI 网络
cd /opt/k8s
vim calico.yaml
#修改里面定义Pod网络(CALICO_IPV4POOL_CIDR),与前面kube-controller-manager配置文件指定的cluster-cidr网段一样- name: CALICO_IPV4POOL_CIDRvalue: "192.168.0.0/16"kubectl apply -f calico.yamlkubectl get pods -n kube-system
NAME                                       READY   STATUS    RESTARTS   AGE
calico-kube-controllers-659bd7879c-4h8vk   1/1     Running   0          58s
calico-node-nsm6b                          1/1     Running   0          58s
calico-node-tdt8v                          1/1     Running   0          58s#等 Calico Pod 都 Running,节点也会准备就绪
kubectl get nodes

node02 节点部署

//在 node01 节点上操作
cd /opt/
scp kubelet.sh proxy.sh root@192.168.80.12:/opt/
scp -r /opt/cni root@192.168.80.12:/opt///在 node02 节点上操作
#启动kubelet服务
cd /opt/
chmod +x kubelet.sh
./kubelet.sh 192.168.80.12//在 master01 节点上操作
kubectl get csr
NAME                                                   AGE  SIGNERNAME                                    REQUESTOR           CONDITION
node-csr-BbqEh6LvhD4R6YdDUeEPthkb6T_CJDcpVsmdvnh81y0   10s  kubernetes.io/kube-apiserver-client-kubelet   kubelet-bootstrap   Pending
node-csr-duiobEzQ0R93HsULoS9NT9JaQylMmid_nBF3Ei3NtFE   85m  kubernetes.io/kube-apiserver-client-kubelet   kubelet-bootstrap   Approved,Issued#通过 CSR 请求
kubectl certificate approve node-csr-BbqEh6LvhD4R6YdDUeEPthkb6T_CJDcpVsmdvnh81y0kubectl get csr
NAME                                                   AGE  SIGNERNAME                                    REQUESTOR           CONDITION
node-csr-BbqEh6LvhD4R6YdDUeEPthkb6T_CJDcpVsmdvnh81y0   23s  kubernetes.io/kube-apiserver-client-kubelet   kubelet-bootstrap   Approved,Issued
node-csr-duiobEzQ0R93HsULoS9NT9JaQylMmid_nBF3Ei3NtFE   85m  kubernetes.io/kube-apiserver-client-kubelet   kubelet-bootstrap   Approved,Issued#加载 ipvs 模块
for i in $(ls /usr/lib/modules/$(uname -r)/kernel/net/netfilter/ipvs|grep -o "^[^.]*");do echo $i; /sbin/modinfo -F filename $i >/dev/null 2>&1 && /sbin/modprobe $i;done#使用proxy.sh脚本启动proxy服务
cd /opt/
chmod +x proxy.sh
./proxy.sh 192.168.80.12#查看群集中的节点状态
kubectl get nodes

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/77753.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

计算机视觉(六)图像分类

文章目录 常见的CNNAlexnet1乘1的卷积 VGG网络Googlenet&#xff08;Inception V1、V2、V3&#xff09;全局平均池化总结 Resnet、ResnextResNet残差网络ResNeXt网络 应用案例VGGResnet 常见的CNN Alexnet DNN深度学习革命的开始 沿着窗口进行归一化。 1乘1的卷积 VGG网络…

Linux葵花宝典-无需自宫版

1. Linux简介 1.1 什么是Linux Linux&#xff0c;全称GNU/Linux&#xff0c;是一种免费使用和自由传播的类UNIX操作系统&#xff0c;其内核由Linus Torvalds于1991年10月5日首次发布&#xff0c;它主要受到Minix和Unix思想的启发&#xff0c;是一个基于POSIX的多用户、多任务、…

unraid docker桥接模式打不开页面,主机模式正常

unraid 80x86版filebrowser&#xff0c;一次掉电后&#xff0c;重启出现权限问题&#xff0c;而且filebrowser的核显驱动不支持amd的VA-API 因为用不上核显驱动&#xff0c;解压缩功能也用不上&#xff0c;官方版本的filebrowser还小巧一些&#xff0c;18m左右 安装的时候总是…

HDFS中的sequence file

sequence file序列化文件 介绍优缺点格式未压缩格式基于record压缩格式基于block压缩格式 介绍 sequence file是hadoop提供的一种二进制文件存储格式一条数据称之为record&#xff08;记录&#xff09;&#xff0c;底层直接以<key, value>键值对形式序列化到文件中 优…

浅析RabbitMQ死信队列

原文首发于公众号【CSJerry】 在现代分布式系统中&#xff0c;消息队列扮演着至关重要的角色。它们可以实现应用程序之间的异步通信&#xff0c;并确保数据的可靠传输和处理。而在这个领域中&#xff0c;RabbitMQ作为一种强大而受欢迎的消息队列解决方案&#xff0c;具备了高…

基于Jenkins+Python+Ubuntu+Docker的接口/UI自动化测试环境部署详细过程

基于JenkinsPythonUbuntuDocker的接口/UI自动化测试环境部署详细过程 1 Jenkins是什么&#xff1f;2 Jenkins目标是什么&#xff1f;3 什么是CI/CD?3.1 CI持续集成3.2 CD持续部署3.3 CD持续交付 4 Ubuntu环境4.1 环境需求4.2 实现思路 5 Ubuntu下安装Docker6 安装Jenkins6.1 拉…

idea如何加快创建Maven项目的速度

一、下载archetype-catalog.xml 下载archetype-catalog.xml的地址 二、配置 以下所说的配置都指全局配置。 配置Maven -DarchetypeCataloglocal -Dfile.encodinggbk

深度学习基础知识扫盲

深度学习 监督学习&#xff08;Supervised learning&#xff09;监督学习分类 无监督学习&#xff08;Non-supervised learning&#xff09;无监督学习的算法无监督学习使用场景 术语特征值特征向量特征工程&#xff08;Feature engineering&#xff09;特征缩放Sigmod functio…

使用Golang实现一套流程可配置,适用于广告、推荐系统的业务性框架——简单应用

在诸如广告、推荐等系统中&#xff0c;我们往往会涉及过滤、召回和排序等过程。随着系统业务变得复杂&#xff0c;代码的耦合和交错会让项目跌入难以维护的深渊。于是模块化设计是复杂系统的必备基础。这篇文章介绍的业务框架脱胎于线上多人协作开发、高并发的竞价广告系统&…

数据库操作系列-Mysql, Postgres常用sql语句总结

文章目录 1.如果我想要写一句sql语句&#xff0c;实现 如果存在则更新&#xff0c;否则就插入新数据&#xff0c;如何解决&#xff1f;MySQL数据库实现方案: ON DUPLICATE KEY UPDATE写法 Postgres数据库实现方案:方案1&#xff1a;方案2&#xff1a;关于更新&#xff1a;如何实…

前端js--扩展卡片

效果图 代码 <!DOCTYPE html> <html lang"en"><head><meta charset"UTF-8" /><meta name"viewport" content"widthdevice-width, initial-scale1.0" /><link rel"stylesheet" href"…

构建器/建造者/构建者模式(C++)

定义 将一个复杂对象的构建与其表示相分离,使得同样的构建过程(稳定)可以创建不同的表示(变化)。 应用场景 在软件系统中&#xff0c;有时候面临着“一个复杂对象”的创建工作&#xff0c;其通常由各个部分的子对象用一定的算法构成;由于需求的变化&#xff0c;这个复杂对象…

centos7 ‘xxx‘ is not in the sudoers file...

如题 执行命令输入密码后时报错&#xff1a; [sudo] password for admin &#xff08;我的账户&#xff09;原因&#xff0c;当前用户还没有加入到root的配置文件中。 解决 vim打开配置文件&#xff0c;如下&#xff1a; #切换到root用户 su #编辑配置文件 vim /etc/sudoe…

AMASS database

AMASS是一个由不同的光学标记运动捕捉数据集统一表示在一个公共框架和参数化下的大型人体运动数据库。它包含了超过40小时的运动数据&#xff0c;涵盖了300多个主体和11000多个运动。它使用了SMPL人体模型&#xff0c;它是一种基于混合形状和姿态空间的生成式人体模型&#xff…

【python】绘图代码模板

【python】绘图代码模板 pandas.DataFrame.plot( )画图函数Seaborn绘图 -数据可视化必备主题样式导入数据集可视化统计关系散点图抖动图箱线图小提琴图Pointplot群图 可视化数据集的分布绘制单变量分布柱状图直方图 绘制双变量分布Hex图KDE 图可视化数据集中的成对关系 好看的图…

机器学习中的人生启示:“没有免费的午餐”定理(NFL)的个人发展之道→探讨感觉和身边其他人有差距怎么办?

文章目录 1 引言2 探究NFL定理的含义3 将NFL定理应用于个人发展4 探索个人兴趣和天赋5 结论 1 引言 机器学习中的“没有免费的午餐”定理&#xff08;NFL&#xff09;是一条深具启示意义的原则。该定理表明&#xff0c;没有一种算法可以在所有问题上都表现最好。在机器学习领域…

FPGA开发:音乐播放器

FPGA开发板上的蜂鸣器可以用来播放音乐&#xff0c;只需要控制蜂鸣器信号的方波频率、占空比和持续时间即可。 1、简谱原理 简谱上的4/4表示该简谱以4分音符为一拍&#xff0c;每小节4拍&#xff0c;简谱上应该也会标注每分钟多少拍。音符时值对照表如下图所示&#xff0c;这表…

软件工程专业应该学什么?

昨天&#xff0c;我朋友的孩子报考了软件工程专业&#xff0c;问我软件工程到底学啥&#xff1f;所以我给他开列了一个书单。 现在高校开了一堆花名头的专业&#xff1a; 偏技术类&#xff1a;云计算、大数据、人工智能、物联网 偏应用类&#xff1a;电子商务、信息管理 但我个…

MySQL|查看事务加锁情况

文章目录 使用information_schema数据库中的表获取锁信息INNODB_TRXINNODB_LOCKSINNODB_LOCK_WAITS 使用SHOW ENGINE INNODB STATUS获取信息补充 使用information_schema数据库中的表获取锁信息 在information_schema数据库中&#xff0c;有几个与事务和锁紧密相关的表 INNOD…

3个命令定位CPU飙高

top 指令找出消耗CPU最厉害的那个进程的pid top -H -p 进程pid 找出耗用CPU资源最多的线程pid printf ‘0x%x\n’ 线程pid 将线程pid转换为16进制 结合jstack 找出哪个代码有问题 jstack 进程pid | grep 16进制的线程pid -A 多少行日志 jstack 进程pid | grep 16进制的线程…