引言
在机器学习中,随机森林由许多的决策树组成,因为这些决策树的形成采用了随机的方法,因此也叫做随机决策树。随机森林中的树之间是没有关联的。当测试数据进入随机森林时,其实就是让每一颗决策树进行分类,最后取所有决策树中分类结果最多的那类为最终的结果。因此随机森林是一个包含多个决策树的分类器,并且其输出的类别是由个别树输出的类别的众数而定。随机森林可以既可以处理属性为离散值的量,如ID3算法,也可以处理属性为连续值的量,比如C4.5算法。另外,随机森林还可以用来进行无监督学习聚类和异常点检测。
理论描述
随机森林由决策树组成,决策树实际上是将空间用超平面进行划分的一种方法,每次分割的时候,都将当前的空间一分为二,如说下面的决策树,其属性的值都是连续的实数,如图1所示。将空间划分为成的样子如图2所示(注:所使用图片来自于网络)。
图1 图2
随机森林比较适合做多分类问题,训练和预测速度快;同时,对训练数据