数据库与数据仓库的区别及关系

数据库与数据仓库的区别及关系

  • 数据库
  • 数据仓库
  • 异同
    • 差异
    • 联系
    • 例子

数据库

数据库是结构化信息或数据的有序集合,一般以电子形式存储在计算机系统中。通常由数据库管理系统 (DBMS) 来控制。它是一个长期存储在计算机内的、有组织的、可共享的、统一管理的大量数据的集合。数据库中的数据按一定的数学模型组织、描述和存储,具有较小的冗余,较高的数据独立性和易扩展性,并可为各种用户共享。

数据库可以分为几种类型,其中最常见的是关系型数据库和非关系型数据库:
关系型数据库是一种基于关系模型的数据库,它使用表来存储数据。每个表都有一组列,每行都表示一个数据项。关系型数据库的优点是它们易于使用和理解,支持复杂的查询和事务处理。常见的关系型数据库有:Oracle、DB2、PostgreSQL、Microsoft SQL Server、Microsoft Access、MySQL等。

非关系型数据库是一种不基于关系模型的数据库,它包括文档型数据库、键值数据库、搜索引擎、宽列数据库、图形数据库和时序数据库等。非关系型数据库通常用于存储大量非结构化或半结构化数据,它们具有高扩展性和灵活性。常见的非关系型数据库有:NoSql、Cloudant、MongoDB、redis、HBase等。

数据仓库

数据仓库是一种面向商务智能 (BI) 活动(尤其是分析)的数据管理系统,它仅适用于查询和分析,通常涉及大量的历史数据。数据仓库是一个面向主题的(subject oriented)、集成的(integrate)、相对稳定的(non-volatile)、反映历史变化(time variant)的数据集合,用于支持管理决策。
数据仓库在许多行业都有广泛的应用场景。

例如:
①电商行业:电商数仓收集各类业务日志、用户行为日志以及商品实体表等信息,按照实际业务需求设计模型,将数据规范化摆放、汇总,针对下游需求建设数据集市。如地域消费特点分析、客户消费习惯、分析影响消费因素、分析消费特点,根据数据仓库数据进行数据挖掘,采用智能推荐算法进行商品推荐。
②金融行业:在金融行业中数据量非常庞大,且业务部门繁杂,数据林立,带来较为严重的"数据烟囱"。通过数据仓库将各业务部门数据统一交由数据仓库统一加工与存储,通过数据仓库进行数据分类建模、汇总,根据下游业务部门需求建设相应的数据集市,助力经营决策、风险管理、客户管理、运营管理等。
③通信行业:通过基站收集数据,数据包含用户数据、网络数据,数据仓库按照维度设计模型,如用户、基站、小区、终端、业务类型等。主要应用方向,助力网络优化工作、通过数据分析指导市场精准营销、分析网络数据精准分析网络负荷、分析用户数据与金融行业合作,实现互联网金融。
④医疗行业:医疗大数据数据源通常为临床数据、制药企业和智能穿戴设备,收集多渠道数据,汇入数据仓库,进行共性加工,对接下游应用系统。例如大数据助力药物研究、公共卫生监测等。

异同

数据仓库和数据库都是用于存储数据,数据仓库是面向主题设计的,而数据库是面向事务设计的。数据仓库一般存储历史数据,而数据库一般存储在线交易数据。数据仓库主要用于支持企业的决策分析和业务统计等方面,而数据库主要用于支撑业务系统的日常操作和数据增删改查等方面。

差异

在各方面的不同如下图所示:
在这里插入图片描述

联系

数据仓库和数据库之间有着密切的关系。数据仓库实际上就是一种特殊类型的数据库,它也是由一张一张的数据表组成的,本质上没有任何区别,都是用来存储数据的。

数据仓库通常用于存储历史数据,而数据库则用于存储业务数据。数据仓库的数据来源通常直接来自业务系统的一个或多个数据库或文件,例如SQL Server、Oracle、MySQL、Excel、文本文件等。也就是说,数据仓库是各个数据库的集合体,它的建立是基于这些数据库之上的。

例子

假设你是一家电商公司的老板。在公司早期,你可能只需要一个数据库来存储客户订单和产品信息。这个数据库是面向事务设计的,它能够快速处理客户下单、付款等操作。

随着公司的发展,你可能会发现需要对客户数据进行更深入的分析,以便更好地了解客户需求并制定营销策略。这时候,你就需要建立一个数据仓库来存储历史订单数据,并对这些数据进行分析。

数据仓库是面向主题设计的,它能够支持复杂的查询和分析操作。例如,你可以使用数据仓库来分析20-30岁女性客户在过去五年内购买化妆品类商品的行为,并根据这些信息制定相应的促销活动。

性能方面,数据库和数据仓库都是用来存储和管理数据的,但它们的性能比较取决于它们的设计目的和使用场景。数据库通常用于支持业务系统的日常操作,如查询、修改、删除等,因此它们通常被优化以支持快速的读写操作。而数据仓库则主要用于支持企业的决策分析和业务统计等方面,因此它们通常被优化以支持复杂的查询和分析操作。

总之,数据库是为捕获数据而设计,数据仓库是为分析数据而设计。数据库和数据仓库都有各自的优势和局限性,它们各自适用于不同的场景。数据库更适合用于快速处理事务性操作,而数据仓库则更适合用于进行复杂的数据分析和查询。它们各自有不同的用途和优化方式,可以根据实际需求选择使用。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/79855.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

python 合并多个excel文件

使用 openpyxl 思路: 读取n个excel的文件,存储在一个二维数组中,注意需要转置。将二维数组的数据写入excel。 安装软件: pip install openpyxl源代码: import os import openpyxl # 将n个excel文件数据合并到一个…

模拟实现消息队列项目(系列4) -- 服务器模块(内存管理)

目录 前言 1. 创建MemoryDataCenter 2. 封装Exchange 和 Queue方法 3. 封装Binding操作 4. 封装Message操作 4.1 封装消息中心集合messageMap 4.2 封装消息与队列的关系集合queueMessageMap的操作 5. 封装未确认消息集合waitMessage的操作 6. 从硬盘中恢复数据到内存中 7. Memo…

Leetcode 每日一题 - 删除有序数组中的重复项题 #算法 #Java

1.1 题目 给你一个 升序排列 的数组 nums ,请你 原地 删除重复出现的元素,使每个元素 只出现一次 ,返回删除后数组的新长度。元素的 相对顺序 应该保持 一致 。然后返回 nums 中唯一元素的个数。 考虑 nums 的唯一元素的数量为 k &#xff…

行业追踪,2023-08-07

自动复盘 2023-08-07 凡所有相,皆是虚妄。若见诸相非相,即见如来。 k 线图是最好的老师,每天持续发布板块的rps排名,追踪板块,板块来开仓,板块去清仓,丢弃自以为是的想法,板块去留让…

虹科分享 | 新时代“救命神器”:看AR眼镜如何应用于紧急救险场景

从工业时代到如今迎来的“体验时代”,体验即内容,5G、AI、空间计算技术的突破,为各行各业创建了丰富的内容体验模式,让人们能够听之、触之、与之交互。AR是体验时代最具潜力的新技术,在“应急”场景中更是成为了我们在…

JSP实训项目设计报告—MVC简易购物商城

JSP实训项目设计报告—MVC简易购物商城 文章目录 JSP实训项目设计报告—MVC简易购物商城设计目的设计要求设计思路系统要求单点登录模块商品展示模块购物车展示模块 概要设计Model层View层Controller层 详细设计Model层View层登录界面系统主界面 Controller层 系统运行效果项目…

云计算——ACA学习 云计算概述

作者简介:一名云计算网络运维人员、每天分享网络与运维的技术与干货。 座右铭:低头赶路,敬事如仪 个人主页:网络豆的主页​​​​​ 目录 写在前面 上章回顾 本章简介 本章目标 一.云计算产生背景 1.信息时代的重点变革…

【VUE】前端实现防篡改的水印

效果 水印的作用 图片加水印的操作一般是由后端来完成,有些站点保护的知识产权的类型可能比较多,不仅仅是图片,可能还有视频、文字等等,对于不同类型的对象添加水印后端操作比较复杂,所有有些站点逐步的让前端去进行水…

认识所有权

专栏简介:本专栏作为Rust语言的入门级的文章,目的是为了分享关于Rust语言的编程技巧和知识。对于Rust语言,虽然历史没有C、和python历史悠远,但是它的优点可以说是非常的多,既继承了C运行速度,还拥有了Java…

前沿分享-鱼形机器人

可能并不太前沿了,是21年底的新闻了,但是看见了就顺便发一下吧。 大概就是,通过在pH响应型水凝胶中编码不同的膨胀速率而构建了一种环境适应型变形微机器人,让微型机器人直接向癌细胞输送药物从而减轻药物带来副作用。 技术原理是&#xff0c…

拦截器对接口细粒度权限校验

文章目录 一、逻辑分析二、校验规则1.规则类型2.规则划分3.规则配置信息4.规则案例说明5.规则加载 三、拦截器定义1.自定义拦截器2.注册拦截器 四、获取请求参数1.获取get提交方式参数2.获取post提交方式参数(1)定义RequestWrapper类(2&#…

Flink正常消费一段时间后,大量反压,看着像卡住了,但又没有报错。

文章目录 前言一、原因分析二、解决方案 前言 前面我也有提到,发现flink运行一段时间后,不再继续消费的问题。这个问题困扰了我非常久,一开始也很迷茫。又因为比较忙,所以一直没有时间能够去寻找答案,只是通过每天重启…

IDEA中maven项目失效,pom.xml文件橙色/橘色

IDEA中maven项目失效,pom.xml文件橙色/橘色 IDEA中Maven项目失效 IDEA中创建的maven项目中的文件夹都变成普通格式,pom.xml变成橙色 右键点击橙色的pom.xml文件,选择add as maven project maven项目开始重新导入相应依赖,恢复…

字符串查找匹配算法

概述 字符串匹配(查找)是字符串的一种基本操作:给定带匹配查询的文本串S和目标子串T,T也叫做模式串。在文本S中找到一个和模式T相符的子字符串,并返回该子字符串在文本中的位置。 暴力匹配 Brute Force Algorithm&a…

安全狗V3.512048版本绕过

安全狗安装 安全狗详细安装、遇见无此服务器解决、在windows中命令提示符中进入查看指定文件夹手动启动Apache_安全狗只支持 glibc_2.14 但是服务器是2.17_黑色地带(崛起)的博客-CSDN博客 安全狗 safedogwzApacheV3.5.exe 右键电脑右下角安全狗图标-->选择插件-->安装…

vscode中无法使用git解决方案

1 首先查看git安装目录 where git 2 找到bash.exe 的路径 比如:C:/Users/Wangzd/AppData/Local/Programs/Git/bin/bash 3 找到vscode的配置项setting.json 4 添加 "terminal.integrated.shell.windowns": "C:/Users/Wangzd/AppData/Local/Pr…

架构训练营学习笔记:6-2 微服务基础选型

基础选型 微服务基础设施架构 优先级 其中,核心 就是服务注册、服务发现、服务路由。 模式1-嵌入SDK 模式2-反向代理式 模式3-网络代理式(Service Mesh) 模式对比 常见微服务框架选择 嵌入SDK-dubbo Spring Cloud 反向代理式 APISIX …

跨境B2B2C多用户购物网站源码快速部署

​ 搭建跨境B2B2C多用户购物网站需要以下步骤: 1. 确定业务模式和定位:确定网站的业务模式,包括跨境B2B2C的商业模式以及目标用户定位。 2. 营业执照和域名注册:根据当地法律要求,注册一家具有法人资格的公司&#xff…

基于Citespace、vosviewer、R语言的文献计量学可视化分析技术及全流程文献可视化SCI论文高效写作方法

跨尺度预测模式(The Model for Prediction Across Scales - MPAS)是由洛斯阿拉莫斯实验室和美国国家大气研究中心(NCAR)共同开发,其由3个部分组成,分别称为 MPAS-A(大气模型)、MPAS-O(海洋模型&…

一百四十一、Kettle——kettle8.2在Windows本地开启carte服务以及配置子服务器

一、目的 在kettle建好共享资源库后,为了给在服务器上部署kettle的carte服务躺雷,先在Windows本地测试一下怎么玩carte服务 二、Kettle版本以及在Windows本地安装路径 kettle版本是8.2 pdi-ce-8.2.0.0-342 kettle本地安装路径是D:\j…