python接口自动化之正则用例参数化

前言

​ 我们在做接口自动化的时候,处理接口依赖的相关数据时,通常会使用正则表达式来进行提取相关的数据。

​ 正则表达式,又称正规表示式、正规表示法、正规表达式、规则表达式、常规表示法(Regular Expression,在代码中常简写为regex、regexp或RE) 。它是一个特殊的字符序列,它能帮助你方便的检查一个字符串是否与某种模式匹配。在很多文本编辑器里,正则表达式通常被用来检索、替换那些匹配某个模式的文本。而Python 自1.5版本起增加了re模块,它提供 Perl 风格的正则表达式模式。

正则表达式语法

表示单字符

​ 单字符:即表示一个单独的字符,比如匹配数字用\d,匹配非数字用\D

​ 除以下语法,也可以匹配指定的具体字符,可以是1个也可以是多个。

字符

功能说明

.

匹配任意1个字符(除了\n)

[2a]

匹配[]中括号中列举的字符,如这里就是匹配2或者a这两个字符其中的一个

\d

匹配数字,即0-9

\D

匹配非数字

\s

匹配空白,即空格、tab键(tab键为两个空格)

\S

匹配非空白

\w

匹配单词字符,即a-z、A-Z、0-9、_(数字、字母、下划线)

\W

匹配非单词字符

​ 实例如下,这里先说明一下findall(匹配规则,要匹配的字符串)这个方法是查找所有匹配的数据,以列表的形式返回,后面会在re模块进行详解:

import re# .:匹配任意1个字符
re1 = r'.'
res1 = re.findall(re1, '\nj8?0\nbth\nihb')
print(res1)	# 运行结果:['j', '8', '?', '0', 'b', 't', 'h', 'i', 'h', 'b']# []:匹配列举中的其中一个
re2 = r"[abc]"
res2 = re.findall(re2, '1iugfiSHOIFUOFGIDHFGFD2345a6a78b99cc')
print(res2)	# 运行结果:['a', 'a', 'b', 'c', 'c']# \d:匹配一个数字
re3 = r"\d"
res3 = re.findall(re3, "dfghjkl32212dfghjk")
print(res3)	# 运行结果:['3', '2', '2', '1', '2']# \D:匹配一个非数字
re4 = r"\D"
res4 = re.findall(re4, "d212dk?\n$%3;]a")
print(res4)	# 运行结果:['d', 'd', 'k', '?', '\n', '$', '%', ';', ']', 'a']# \s:匹配一个空白键或tab键(tab键实际就是两个空白键)
re5 = r"\s"
res5 = re.findall(re5,"a s d a  9999")
print(res5)	# 运行结果:[' ', ' ', ' ', ' ', ' ']# \S: 匹配非空白键
re6 = r"\S"
res6 = re.findall(re6, "a s d a  9999")
print(res6)	# 运行结果:['a', 's', 'd', 'a', '9', '9', '9', '9']# \w:匹配一个单词字符(数字、字母、下划线)
re7 = r"\w"
res7 = re.findall(re7, "ce12sd@#a as_#$")
print(res7)	# 运行结果:['c', 'e', '1', '2', 's', 'd', 'a', 'a', 's', '_']# \W:匹配一个非单词字符(不是数字、字母、下划线)
re8 = r"\W"
res8 = re.findall(re8, "ce12sd@#a as_#$")
print(res8)	# 运行结果:['@', '#', ' ', '#', '$']# 匹配指定字符
re9 = r"python"
res9 = re.findall(re9, "cepy1thon12spython123@@python")
print(res9)	# 运行结果:['python', 'python']
PYTHON 复制 全屏

表示数量

​ 如果要匹配某个字符多次,就可以在字符后面加上数量进行表示,具体规则如下:

字符

功能说明

*

匹配前一个字符出现0次或者无限次,即可有可无

+

匹配前一个字符出现1次或无限次,即至少1次

?

匹配前一个字符出现0次或1次,即要么没有,要么只有1次

匹配前一个字符出现m次

匹配前一个字符至少出现m次

匹配前一个字符出现从m到n次

​ 实例如下:

import re# *:表示前一个字符出现0次以上(包括0次)
re21 = r"\d*"   # 这里匹配的规则,前一个字符是数字
res21 = re.findall(re21, "343aa1112df345g1h6699")  # 如匹配到a时,属于符合0次,但因为没有值所以会为空
print(res21)	# 运行结果:['343', '', '', '1112', '', '', '345', '', '1', '', '6699', '']# ? : 表示0次或者一次
re22 = r"\d?"
res22 = re.findall(re22, "3@43*a111")
print(res22)	# 运行结果:['3', '', '4', '3', '', '', '1', '1', '1', '']# {m}:表示匹配一个字符m次
re23 = r"1[3456789]\d{9}" # 手机号:第1位为1,第2位匹配列举的其中1个数字,第3位开始是数字,且匹配9次
res23 = re.findall(re23,"sas13566778899fgh256912345678jkghj12788990000aaa113588889999")
print(res23)	# 运行结果:['13566778899', '13588889999']# {m,}:表示匹配一个字符至少m次
re24 = r"\d{7,}"
res24 = re.findall(re24, "sas12356fgh1234567jkghj12788990000aaa113588889999")
print(res24)	# 运行结果:['1234567', '12788990000', '113588889999']# {m,n}:表示匹配一个字符出现m次到n次
re25 = r"\d{3,5}"
res25 = re.findall(re25, "aaaaa123456ghj333yyy77iii88jj909768876")
print(res25)	# 运行结果:['12345', '333', '90976', '8876']

匹配分组

字符

功能说明

|

匹配左右任意一个表达式

(ab)

将括号中字符作为一个分组

​ 实例如下:

import re# 同时定义多个规则,只要满足其中一个
re31 = r"13566778899|13534563456|14788990000"
res31 = re.findall(re31, "sas13566778899fgh13534563456jkghj14788990000")
print(res31)	# 运行结果:['13566778899', '13534563456', '14788990000']# ():匹配分组:在匹配规则的数据中提取括号里的数据
re32 = r"aa(\d{3})bb"	# 如何数据符合规则,结果只会取括号中的数据,即\d{3}
res32 = re.findall(re32, "ggghjkaa123bbhhaa672bbjhjjaa@45bb")
print(res32)	# 运行结果:['123', '672']

表示边界

字符

功能说明

^

匹配字符串开头,只能匹配开头

$

匹配字符串结尾,只能匹配结尾

\b

匹配一个单词的边界(单词:字母、数字、下划线)

\B

匹配非单词的边界

​ 实例如下:

import re# ^:匹配字符串的开头
re41 = r"^python"   # 字符串开头为python
res41 = re.findall(re41, "python999python")  # 只会匹配这个字符串的开头
res411 = re.findall(re41, "1python999python")  # 因为开头是1,第1位就不符合了
print(res41)	# 运行结果:['python']
print(res411)	# 运行结果:[]# $:匹配字符串的结尾
re42=r"python$"	# 字符串以python结尾
res42 = re.findall(re42, "python999python")
print(res42)	# 运行结果:['python']# \b:匹配单词的边界,单词即:字母、数字、下划线
re43 = r"\bpython"  # 即匹配python,且python的前一位是不是单词
res43 = re.findall(re43, "1python 999 python")  # 这里第1个python的前1位是单词,因此第1个是不符合的
print(res43)	# 运行结果:['python']# \B:匹配非单词的边界
re44 = r"\Bpython"  # 即匹配python,且python的前一位是单词
res44 = re.findall(re44, "1python999python")
print(res44)	# 运行结果:['python', 'python']

贪婪模式

​ python里数量词默认是贪婪的,总是尝试匹配尽可能多的字符,而非贪婪模式则是尝试匹配尽可能少的字符,在表示数量的表达式后加上问号(?)就可以关闭贪婪模式。

​ 如下例子,匹配2个以上的数字,如果符合条件它会一直匹配到不符合才停止,如其中的34656fya,34656符合2个数字以上,那么它会一直匹配到6为止,如果关闭贪婪模式,那么在满足2个数字时就会停止,最后可以匹配到34、65。

python

import re# 默认的贪婪模式下
test = 'aa123aaaa34656fyaa12a123d'
res = re.findall(r'\d{2,}', test)
print(res)	# 运行结果:['123', '34656', '12', '123']# 关闭贪婪模式
res2 = re.findall(r'\d{2,}?', test)
print(res2)	# 运行结果:['12', '34', '65', '12', '12']

re模块

​ 在python中使用正则表达式,就会用到re模块来进行操作,提供的方法一般需要传入两个参数:

  • 📘参数1: 匹配的规则
  • 📒参数2:要进行匹配的字符串

re.findall()

​ 查找所有符合规范的字符串,以列表的形式返回。

import retest = 'aa123aaaa34656fyaa12a123d'
res = re.findall(r'\d{2,}', test)
print(res)	# 运行结果:['123', '34656', '12', '123']

re.search()

​ 查找第一个符合规范的字符串,返回的是一个匹配对象,可以通过group()将匹配到的数据直接提取出来。

import res = "123abc123aaa123bbb888ccc"
res2 = re.search(r'123', s)
print(res2)  # 运行结果:<re.Match object; span=(0, 3), match='123'># 通过group将匹配到的数据提取出来,返回类型为str
print(res2.group())   # 运行结果:123

​ 返回的匹配对象中,span为匹配到的数据的下标范围,match则是匹配到的值。

group()参数说明

  • 🍊不传参数:获取的是匹配到的所有内容
  • 🍋传入数值:可以通过参数来指定,获取第几个分组中的内容(获取第1个分组,传入参数1,获取第2个分组,传入参数2,依次类推。)
import res = "123abc123aaa123bbb888ccc"
re4 = r"aaa(\d{3})bbb(\d{3})ccc"	# 这里分组就是前面说到的匹配语法:()
res4 = re.search(re4, s)
print(res4)
# group不传参数:获取的是匹配到的所有内容
# group通过参数指定,获取第几个分组中的内容(获取第1个分组,传入参数1,获取第2个分组,传入参数2,依次类推..
print(res4.group())
print(res4.group(1))
print(res4.group(2))

re.match()

​ 从字符串的起始位置进行匹配,匹配成功则返回匹配到的对象,如果开头的位置不符合匹配的规则,不会继续往后面去匹配,直接返回None。re.match()re.search()都是只匹配一个,不一样的是,前者只匹配字符串的开头,后者则是会匹配整个字符串,但只获取第一个符合的数据。

import res = "a123abc123aaa1234bbb888ccc"
# match:只匹配字符串的开头,开头不符合就返回None
res1 = re.match(r"a123", s)
res2 = re.match(r"a1234", s)
print(res1)  # 运行结果:<re.Match object; span=(0, 4), match='a123'>
print(res2)  # 运行结果:None

re.sub()

​ 检索和替换:用于替换字符串中的匹配项

re.sub()参数说明

  • 🍇参数1:待替换的字符串
  • 🍉参数2:目标字符串
  • 🍑参数3:要进行替换操作的字符串
  • 🍓参数4:可以指定最多替换的次数,非必填(默认替换所有符合规范的字符串)
import res = "a123abc123aaa123bbb888ccc"
# <font color="#FF0000">参数1:</font>待替换的字符串
# <font color="#FF0000">参数2:</font>目标字符串
# <font color="#FF0000">参数3:</font>要进行替换操作的字符串
# <font color="#FF0000">参数4:</font>可以指定最多替换的次数,非必填(默认替换所有符合规范的字符串)
res5 = re.sub(r'123', "666", s, 4)
print(res5)  # 运行结果:a666abc666aaa666bbb888ccc

用例参数化

​ 在接口自动化测试中,我们的测试数据都是保存在excel中的,有些参数如果写死一个数据,可能换个场景或者换个环境就不能用了,那么切换环境时就需要先把新环境的测试数据准备好,并且能支持去跑我们的脚本,或者把excel的数据修改为适合新环境的测试数据,维护的成本较高。因此就需要把我们的自动化脚本测试数据尽量地参数化,降低维护成本。

​ 我们先看简单版的参数化,以登录为例,登录时用到的账号、密码等信息都可以提取出来放到配置文件,修改数据或更换环境时直接在配置文件中统一修改就可以了。

​ 但如果有多个不同的数据需要参数化呢,每个参数都加个判断去替换数据吗?这样的代码既啰嗦又不好维护,这时re模块就可以用上了,直接看一个实例:

import re
from common.myconfig import confclass TestData:"""用于临时保存一些要替换的数据"""passdef replace_data(data):r = r"#(.+?)#"	# 注意这个分组()内的内容# 判断是否有需要替换的数据while re.search(r, data):res = re.search(r, data)	# 匹配出第一个要替换的数据item = res.group()	# 提取要替换的数据内容key = res.group(1)	# 获取要替换内容中的数据项try:# 根据替换内容中的数据项去配置文件中找到对应的内容,进行替换data = data.replace(item, conf.get_str("test_data", key))except:# 如果在配置文件中找不到就在临时保存的数据中找,然后替换data = data.replace(item, getattr(TestData, key))return data

​ 注意这里的正则表达式是有使用?关闭贪婪模式的,因为测试数据中可能会需要参数化2个或以上的数据,如果不关闭贪婪模式,它就只能匹配搭配一个数据,举例如下:

import redata = '{"mobile_phone":"#phone#","pwd":"#pwd#","user":#user#}'
r1 = "#(.+)#"
res1 = re.findall(r1, data)
print(res1)  # 运行结果:['phone#","pwd":"#pwd#","user":#user']	注意这里单引号只有一个数据
print(len(res1))      # 运行结果:1r2 = "#(.+?)#"
res2 = re.findall(r2, data)
print(res2)  # 运行结果:['phone', 'pwd', 'user']
print(len(res2))      # 运行结果:3

​ 另外提到的一个用于临时保存数据的类,这里主要用于保存接口返回的数据,因为有些测试数据是动态变化的,可能要依赖于某个接口,后面的测试用例又需要这些数据,那么我们在接口返回时就可以保存到这个类里作为一个类属性,接着在需要用这个数据的测试用例时,把这个类属性提取出来替换到测试数据中即可。提示:设置属性setattr(对象, 属性名, 属性值),获取属性值getattr(对象, 属性名)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/81083.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

yaml文件详解

目录 一、yaml的简介 二、yaml示例 1.编写yaml文件创建pod资源 2. 创建资源对象 3.查看创建的pod资源 4.创建service服务对外提供访问并测试 5.创建资源对象 6.查看创建的service 7.在浏览器输入 nodeIP:nodePort 即可访问 三、 获取yaml配置资源 四、将现有资源生成模…

【docker】docker-compose服务编排

目录 一、服务编排概念二、docker compose2.1 定义2.2 使用步骤2.3 docker-compose安装2.4 docker-compose卸载 三、编排示例 一、服务编排概念 1.微服务架构的应用系统中一般包含若干个微服务&#xff0c;每个微服务一般都会部署多个实例&#xff0c;如果每个微服务都要手动启…

1 swagger简单案例

1.1 加入依赖 <!--swagger图形化接口--><dependency><groupId>io.springfox</groupId><artifactId>springfox-swagger2</artifactId><version>2.9.2</version> </dependency><dependency><groupId>io.spri…

Agent:OpenAI的下一步,亚马逊云科技站在第5层

什么是Agent&#xff1f;在大模型语境下&#xff0c;可以理解成能自主理解、规划、执行复杂任务的系统。Agent也将成为新的起点&#xff0c;成为各行各业构建新一代AI应用必不可少的组成部分。 对此&#xff0c;初创公司Seednapse AI创始人提出构建AI应用的五层基石理论&#…

IO(JavaEE初阶系列8)

目录 前言&#xff1a; 1.文件 1.1认识文件 1.2结构和目录 1.3文件路径 1.4文本文件vs二进制文件 2.文件系统的操作 2.1Java中操作文件 2.2File概述 2.2.1构造File对象 2.2.2File中的一些方法 3.文件内容的操作 3.1字节流 3.1.1InPutStream的使用方法 3.1.2OutPu…

设计模式之三大类

目录 设计模式分类 1.创建型模式(Creational Patters) 2.结构型模式(Structural Patterns) 3.行为型模式(Behavioral Patterns) 3.1命令模式(The Command Pattern) 2.1适配器模式 2.1.1Object and Class Adapters 设计模式分类 1.创建型模式(Creational Patters) Fato…

SaaS系统相比传统软件,为何数据更安全?

随着云计算、5G等技术的不断进步&#xff0c;SaaS行业步入了快速发展的阶段&#xff0c;应用场景也日趋多元化。预计2023年底&#xff0c;中国SaaS行业市场规模将达到555.1亿元。 中研网对于SaaS发展态势预测这样评价&#xff1a; 当前&#xff0c;我国在多个维度上具备发展 S…

【机器学习】处理样本不平衡的问题

文章目录 样本不均衡的概念及影响样本不均衡的解决方法样本层面欠采样 &#xff08;undersampling&#xff09;过采样数据增强 损失函数层面模型层面采样集成学习 决策及评估指标 样本不均衡的概念及影响 机器学习中&#xff0c;样本不均衡问题经常遇到&#xff0c;比如在金融…

详解Kafka分区机制原理|Kafka 系列 二

Kafka 系列第二篇&#xff0c;详解分区机制原理。为了不错过更新&#xff0c;请大家将本号“设为星标”。 点击上方“后端开发技术”&#xff0c;选择“设为星标” &#xff0c;优质资源及时送达 上一篇文章介绍了 Kafka 的基本概念和术语&#xff0c;里面有个概念是 分区(Part…

验证码安全志:AIGC+集成环境信息信息检测

目录 知己知彼&#xff0c;黑灰产破解验证码的过程 AIGC加持&#xff0c;防范黑灰产的破解 魔高一丈&#xff0c;黑灰产AIGC突破常规验证码 双重防护&#xff0c;保障验证码安全 黑灰产经常采用批量撞库方式登录用户账号&#xff0c;然后进行违法违规操作。 黑灰产将各种方…

鸿鹄工程项目管理系统em Spring Cloud+Spring Boot+前后端分离构建工程项目管理系统 em

​ Java版工程项目管理系统 Spring CloudSpring BootMybatisVueElementUI前后端分离 功能清单如下&#xff1a; 首页 工作台&#xff1a;待办工作、消息通知、预警信息&#xff0c;点击可进入相应的列表 项目进度图表&#xff1a;选择&#xff08;总体或单个&#xff09;项目…

算法与数据结构-跳表

文章目录 什么是跳表跳表的时间复杂度跳表的空间复杂度如何高效的插入和删除跳表索引动态更新代码示例 什么是跳表 对于一个单链表来讲&#xff0c;即便链表中存储的数据是有序的&#xff0c;如果我们要想在其中查找某个数据&#xff0c;也只能从头到尾遍历链表。这样查找效率…

Makefile

什么是 Makefile 一个工程中的源文件不计其数&#xff0c;其按类型、功能、模块分别放在若干个目录中&#xff0c; Makefile文件定义了一系列的规则来指定哪些文件需要先编译&#xff0c;哪些文件需要后编 译&#xff0c;哪些文件需要重新编译&#xff0c;甚至于进行更复杂的功…

Plecs最新安装免费版下载链接/Plecs 电力仿真软件4.7.5版本下载/实测能用

Plecs最新安装免费版下载链接 Plecs 电力仿真软件4.7.5版本下载 实测能用&#xff1a;

Flutter 让软键盘不再自动弹起

1、问题说明&#xff1a; 在开发中&#xff0c;经常遇到这种事&#xff0c;一个页面有输入框&#xff0c;点击输入框后&#xff0c;会弹起软键盘&#xff0c;同时输入框会聚焦&#xff0c;手动收起软键盘后&#xff0c;点击另一个按钮前往下一个页面或者显示一个弹窗&#xff0…

web集群学习--基于CentOS构建LVS-DR集群、配置nginx负载均衡

基于CentOS构建LVS-DR集群 环境准备 主机名 ip地址 node1 192.168.1.140 client node2 192.168.1.141 LVS node3 192.168.1.142 RS1 node4 192.168.1.143 RS2配置 1.关闭防火墙和SELinux [rootclient~]# systemctl stop firewalld [rootclient~]# systemctl disabl…

数据可视化(八)堆叠图,双y轴,热力图

1.双y轴绘制 #双Y轴可视化数据分析图表 #add_subplot() dfpd.read_excel(mrbook.xlsx) x[i for i in range(1,7)] y1df[销量] y2df[rate] #用来正常显示负号 plt.rcParams[axes.unicode_minus]False figplt.figure() ax1fig.add_subplot(1,1,1)#一行一列&#xff0c;第一个区域…

机器学习笔记:李宏毅ChatGPT Finetune VS Prompt

1 两种大语言模型&#xff1a;GPT VS BERT 2 对于大语言模型的两种不同期待 2.1 “专才” 2.1.1 成为专才的好处 Is ChatGPT A Good Translator? A Preliminary Study 2023 Arxiv 箭头方向指的是从哪个方向往哪个方向翻译 表格里面的数值越大表示翻译的越好 可以发现专门做翻…

HOT79-跳跃游戏 II

leetcode原题链接&#xff1a;跳跃游戏 II 题目描述 给定一个长度为 n 的 0 索引整数数组 nums。初始位置为 nums[0]。 每个元素 nums[i] 表示从索引 i 向前跳转的最大长度。换句话说&#xff0c;如果你在 nums[i] 处&#xff0c;你可以跳转到任意 nums[i j] 处: 0 < j &…

笔记本WIFI连接无网络【实测有效,不用重启电脑】

笔记本Wifi连接无网络实测有效解决方案 问题描述&#xff1a; 笔记本买来一段时间后&#xff0c;WIFI网络连接开机一段时间还正常连接&#xff0c;但是过一段时间显示网络连接不上&#xff0c;重启电脑太麻烦&#xff0c;选择编写重启网络脚本解决。三步解决问题。 解决方案&a…