文章目录
- 什么是跳表
- 跳表的时间复杂度
- 跳表的空间复杂度
- 如何高效的插入和删除
- 跳表索引动态更新
- 代码示例
什么是跳表
对于一个单链表来讲,即便链表中存储的数据是有序的,如果我们要想在其中查找某个数据,也只能从头到尾遍历链表。这样查找效率就会很低,时间复杂度会很高,是 O(n)。
那怎么来提高查找效率呢?如果像图中那样,对链表建立一级“索引”,查找起来是不是就会更快一些呢?每两个结点提取一个结点到上一级,我们把抽出来的那一级叫做索引或索引层。你可以看我画的图。图中的 down 表示 down 指针,指向下一级结点。
如果我们现在要查找某个结点,比如 16。我们可以先在索引层遍历,当遍历到索引层中值为 13 的结点时,我们发现下一个结点是 17,那要查找的结点 16 肯定就在这两个结点之间。然后我们通过索引层结点的 down 指针,下降到原始链表这一层,继续遍历。这个时候,我们只需要再遍历 2 个结点,就可以找到值等于 16 的这个结点了。这样,原来如果要查找 16,需要遍历 10 个结点,现在只需要遍历 7 个结点。
从这个例子里,我们看出,加来一层索引之后,查找一个结点需要遍历的结点个数减少了,也就是说查找效率提高了。那如果我们再加一级索引呢?效率会不会提升更多呢?
跟前面建立第一级索引的方式相似,我们在第一级索引的基础之上,每两个结点就抽出一个结点到第二级索引。现在我们再来查找 16,只需要遍历 6 个结点了,需要遍历的结点数量又减少了。
这种链表加多级索引的结构,就是跳表。
跳表的时间复杂度
按照我们刚才讲的,每两个结点会抽出一个结点作为上一级索引的结点,那第一级索引的结点个数大约就是 n/2,第二级索引的结点个数大约就是 n/4,第三级索引的结点个数大约就是 n/8,依次类推,也就是说,第 k 级索引的结点个数是第 k-1 级索引的结点个数的 1/2,那第 k 级索引结点的个数就是 n/(2k)。
假设索引有 h 级,最高级的索引有 2 个结点。通过上面的公式,我们可以得到 n/(2h)=2,从而求得 h=log2n-1。如果包含原始链表这一层,整个跳表的高度就是 log2n。我们在跳表中查询某个数据的时候,如果每一层都要遍历 m 个结点,那在跳表中查询一个数据的时间复杂度就是 O(m*logn)。
那这个 m 的值是多少呢?按照前面这种索引结构,我们每一级索引都最多只需要遍历 3 个结点,也就是说 m=3,为什么是 3 呢?我来解释一下。
假设我们要查找的数据是 x,在第 k 级索引中,我们遍历到 y 结点之后,发现 x 大于 y,小于后面的结点 z,所以我们通过 y 的 down 指针,从第 k 级索引下降到第 k-1 级索引。在第 k-1 级索引中,y 和 z 之间只有 3 个结点(包含 y 和 z),所以,我们在 K-1 级索引中最多只需要遍历 3 个结点,依次类推,每一级索引都最多只需要遍历 3 个结点。
通过上面的分析,我们得到 m=3,所以在跳表中查询任意数据的时间复杂度就是 O(logn)。这个查找的时间复杂度跟二分查找是一样的。换句话说,我们其实是基于单链表实现了二分查找.
跳表的空间复杂度
通过上面的分析,我们得到 m=3,所以在跳表中查询任意数据的时间复杂度就是 O(logn)。这个查找的时间复杂度跟二分查找是一样的。换句话说,我们其实是基于单链表实现了二分查找
这几级索引的结点总和就是 n/2+n/4+n/8…+8+4+2=n-2。所以,跳表的空间复杂度是 O(n)。也就是说,如果将包含 n 个结点的单链表构造成跳表,我们需要额外再用接近 n 个结点的存储空间。
如何高效的插入和删除
我们知道,在单链表中,一旦定位好要插入的位置,插入结点的时间复杂度是很低的,就是 O(1)。但是,这里为了保证原始链表中数据的有序性,我们需要先找到要插入的位置,这个查找操作就会比较耗时。
对于纯粹的单链表,需要遍历每个结点,来找到插入的位置。但是,对于跳表来说,我们讲过查找某个结点的时间复杂度是 O(logn),所以这里查找某个数据应该插入的位置,方法也是类似的,时间复杂度也是 O(logn)。我画了一张图,你可以很清晰地看到插入的过程。
我们再看下删除操作。 如果这个结点在索引中也有出现,我们除了要删除原始链表中的结点,还要删除索引中的。因为单链表中的删除操作需要拿到要删除结点的前驱结点,然后通过指针操作完成删除。所以在查找要删除的结点的时候,一定要获取前驱结点。当然,如果我们用的是双向链表,就不需要考虑这个问题了。
跳表索引动态更新
当我们不停地往跳表中插入数据时,如果我们不更新索引,就有可能出现某 2 个索引结点之间数据非常多的情况。极端情况下,跳表还会退化成单链表。
作为一种动态数据结构,我们需要某种手段来维护索引与原始链表大小之间的平衡,也就是说,如果链表中结点多了,索引结点就相应地增加一些,避免复杂度退化,以及查找、插入、删除操作性能下降。
当我们往跳表中插入数据的时候,我们可以选择同时将这个数据插入到部分索引层中。如何选择加入哪些索引层呢?
我们通过一个随机函数,来决定将这个结点插入到哪几级索引中,比如随机函数生成了值 K,那我们就将这个结点添加到第一级到第 K 级这 K 级索引中。
随机函数的选择很有讲究,从概率上来讲,能够保证跳表的索引大小和数据大小平衡性,不至于性能过度退化。
代码示例
public class SkipList {private static final float SKIPLIST_P = 0.5f;private static final int MAX_LEVEL = 16;private int levelCount = 1;private Node head = new Node(); // 带头链表public Node find(int value) {Node p = head;for (int i = levelCount - 1; i >= 0; --i) {while (p.forwards[i] != null && p.forwards[i].data < value) {p = p.forwards[i];}}if (p.forwards[0] != null && p.forwards[0].data == value) {return p.forwards[0];} else {return null;}}public void insert(int value) {// 随机索引层数int level = randomLevel();// 定义新节点Node newNode = new Node();newNode.data = value;//Node update[] = new Node[level];for (int i = 0; i < level; ++i) {update[i] = head;}// record every level largest value which smaller than insert value in update[]Node p = head;for (int i = level - 1; i >= 0; --i) {while (p.forwards[i] != null && p.forwards[i].data < value) {p = p.forwards[i];}update[i] = p;// use update save node in search path}// in search path node next node become new node forwords(next)for (int i = 0; i < level; ++i) {newNode.forwards[i] = update[i].forwards[i];update[i].forwards[i] = newNode;}// update node hightif (levelCount < level) levelCount = level;}public void delete(int value) {Node[] update = new Node[levelCount];Node p = head;for (int i = levelCount - 1; i >= 0; --i) {while (p.forwards[i] != null && p.forwards[i].data < value) {p = p.forwards[i];}update[i] = p;}if (p.forwards[0] != null && p.forwards[0].data == value) {for (int i = levelCount - 1; i >= 0; --i) {if (update[i].forwards[i] != null && update[i].forwards[i].data == value) {update[i].forwards[i] = update[i].forwards[i].forwards[i];}}}while (levelCount > 1 && head.forwards[levelCount] == null) {levelCount--;}}// 理论来讲,一级索引中元素个数应该占原始数据的 50%,二级索引中元素个数占 25%,三级索引12.5% ,一直到最顶层。// 因为这里每一层的晋升概率是 50%。对于每一个新插入的节点,都需要调用 randomLevel 生成一个合理的层数。// 该 randomLevel 方法会随机生成 1~MAX_LEVEL 之间的数,且 :// 50%的概率返回 1// 25%的概率返回 2// 12.5%的概率返回 3 ...private int randomLevel() {int level = 1;while (Math.random() < SKIPLIST_P && level < MAX_LEVEL)level += 1;return level;}public void printAll() {Node p = head;while (p.forwards[0] != null) {System.out.print(p.forwards[0] + " ");p = p.forwards[0];}System.out.println();}public class Node {private int data = -1;private Node forwards[] = new Node[MAX_LEVEL];}
}