ChatGPT的原理与前端领域实践 | 京东云技术团队

一、ChatGPT 简介

ChatGPT的火爆

ChatGPT作为一个web应用,自22年12月发布,仅仅不到3个月的时间,月活用户就累积到1亿。在此之前,最快记录的保持者也需要9个月才达到月活1亿。

ChatGPT的反爬

https://chat.openai.com 因为各种政策&倾向性问题,ChatGPT目前在中国无法访问。而它又是如此火爆,所以就有大量用户通过代理、爬虫等形式来体验ChatGPT。

OpenAI不是专业做网络服务的公司,因此把反爬交给第三方公司CloudFlare去做。

CloudFlare目前全球最大CDN服务商,占比16%;而OpenAI的流量在CloudFlare中占比已经占据前二。

ChatGPT的打字效果

可以看到ChatGPT的输出是逐字输出的打字效果,这里应用到了SSE(SeverSideEvent)服务端推送的技术。一个SSE服务的Chrome开发工具化network截图 :

SSE对比常见Websocket如下:

那么这种打字效果它是故意的还是不小心的?

二、ChatGPT核心原理

ChatGPT我们可以拆解成 Chat、G、P、T 这四个部分讲述。在后续内容前,我们先补充几个机器学习容易理解的概念:

1.模型:所谓模型,本质上就是一个程序(函数),类似 y=ax+bx^2,这里的a和b就是参数,比如GPT3的参数量就是175B说的就是1750亿参数的程序,ChatGLM-6B的参数量是60亿。

2.机器学习:我们平时写的函数,是人来控制的逻辑和参数,而机器学习指的是机器通过某种方式(训练)来确认参数。这个找特定参数的函数的过程,一般分别为3步:

  • 确定函数集合:尽可能穷尽所有参数的可能,比如文章中常见的CNN、RNN、Transform等就是函数集合;
  • 数据:通过数据集,得到评价函数好坏的方式;
  • 执行过程的参数:比如每批次对每个函数执行多少次,最大执行多少次等,这些参数一般称为“超参”,区别于函数内的参数(算法工程师一般自嘲的调参工程师,指的是这个“超参”)

Generative 文字接龙

ChatGPT本质上是个不断递归执行的生成式的函数,下面我们来看2个例子:

Case1:萝卜青菜

当你看到萝卜青菜这4个字的时候,脑海中想的是什么?

我想大概率是各有所爱。

给到GPT的时候,GPT根据这4个字和逗号,推测出下个字的大概率是各

然后GPT会再次将萝卜青菜,各输入给自己,推测出下个字的大概率是有

这就是ChatGPT在输出文字时是逐字输出的原因,这种形式最符合LLM运行的底层原理,在用户体验上也能让用户更快看到第一个字,体验上接近聊天而不是阅读。它是故意的。这里我们得到第一个结论:

ChatGPT(模型 / Fn)的运行原理是每次输入文本(包含上次返回的内容),预测输出后续1个字词。

Case2:书呆子

举个【原创】前端技术十年回顾 文章中的例子:

在这个例子中,为什么输出是“欺负一样”?

从全文中看,这里的主体应该是前端技术,单纯考虑前端技术和就像在小学被,我们可以想出“推广”、“普及。即使不考虑“前端技术”,单纯从就像在小学被,还有可能推测出后文是“教育”、“表扬”。都很难联想到“欺负”。

这里出现“欺负”,很大原因是在前文中欺负(就像,这几个关键字的影响远大于前端技术。所以我们得到第二个结论:

在生成式语言模型中,上文单词离得越远,对生成结果的影响就越小

文字接龙VS完形填空

这里补充下GPT类似的BERT,他们都是基于后面提到的Transform结构,他们的对比如下,总的来说,文字接龙更服务人类大部分情况下的语言模式,因此像马斯克也更青睐于这种第一性原理的东西。

Transform 注意力机制

Case3:绿洲

在这个Case中,绿洲的出现,反而不是因为最近的寻找新的,而是3句话之前的沙漠和骆驼。这里就不得不提到大名鼎鼎的Transform结构,这是Google在2017年在一篇论文 《Attention is all you need》首次提出的一种类神经网络结构,它和核心是自注意力机制,用来解决长距离文本的权重问题。

作者不是机器学习专业,就不展开说了,建议看相关论文和讲解的文章。

Pretrained 预训练

通过前面的文字接龙模式,用大量数据喂出来的预训练模型,使其具备通用的语言能力,这里的预训练有2层含义:

  • 能完成各种通用NLP任务(分类、排序、归纳等等)
  • 稍加微调训练,能完成特定领域的语言任务(不必从头开始)

Chat 对话(通过Finetuning实现)

因为预训练是无人类的监督,因此通用模型不一定按照聊天形式返回文本,因为它的训练素材包罗万象,比如我说今天天气差,它根据历史的经验:今天天气差的表述方式有下面几种,就会输出这句话的不同的表述,而不是像聊天一样跟我一起吐槽 。下面的OpenAI的GPT3模型对今天天气差的输出:

要让GPT3像聊天一样输出,就需要有针对性的对它就行微调(fine-tuning)训练,例如通过特定的问答结构的语料训练:

能聊天之后,想要上线,就必须给模型上枷锁,不能回答和人类价值观不符的内容,否则资本主义的铁拳也会降临

OpenAI通过人工标注和强化训练的方式提升ChatGPT回答质量并校正它的价值观倾向,想要更多了解这块内容,可以了解下ChatGPT背后的算法模型。

三、ChatGPT的应用

OpenAI官方给到了49个常见的ChatGPT应用场景:
https://openai.com/blog/chatgpt

总的来说可以分为:

  • 文案创作
  • 提炼总结
  • 代码编写
  • 语言美化/跨语言转换
  • 角色扮演

对于前端开发同学来说,最关注它的代码能力。正好在一个小程序转taro重构的项目中体验了ChatGPT的能力:

1. 能理解小程序模板语法,并转换出ts的taro组件

2. 理解小程序页面逻辑,并修正props

小程序的页面逻辑page.js是独立于index.wxml的,在得到纯wxml生成的taro组件后,把page.js的代码合并进去

3. 可以补充知识,教它举一反三特有的语法

HiBox融合ChatGPT

这么好的能力,应该如何沉淀呢?

我们首先想到了VSCode插件,刚好HiBox本身有登录态、自定义Webview、远程配置化的能力,那就将ChatGPT集成到HiBox中(太酷啦),Node端接入ChatGPT的接口,通过Webview前端实现一个聊天窗,再通过配置系统集成常用的Prompt,这样前端开发就能通过VSCode方便地用到ChatGPT的能力。整体结构如下:

数据源方面,也从爬虫版本ChatGPT,逐步切换到API代理服务中,代理服务接入GPT3.5的模型能力,整体体验非常接近ChatGPT。代理服务文档:
https://joyspace.jd.com/pages/yLnDY3B5UJ1rXP8UYrN6

HiBox的ChatGPT目前仅需erp登录即可免费使用,更多使用方式和安装方式:HiBox快速开始

私域数据集成

在使用ChatGPT的过程中,也注意到2个问题:

  • 公司敏感的代码和信息不能传给ChatGPT
  • 特定领域的非敏感知识,比如水滴模板,ChatGPT没学习过

首先想到的是,采用微调(fine-tuning)的方式,将私域数据数据集成到大语言模型(LLM)中,然后私有化部署在公司的服务器上,这样任意代码和文档都可以发送给它,我们尝试了下面2种方式:

GPT3 fine-tuning

一是通过OpenAI官网提到的GPT3的fine-tuning接口,将私域数据传给OpenAI,OpenAI在他们的服务器里微调训练,然后部署在OpenAI的服务器中,整个过程是黑盒。

ChatGLM-6B fine-tuning

二是用清华开源的ChatGLM-6B作为基础模型,在公司的九数平台上申请GPU机器,将私域数据通过LORA的方式微调得到LORA权重,然后自己部署,整个过程完全私有化。

GPT3.5 langChain

上面的两种方式总的来说,部署后的推理效果都很难达到GPT3.5-API的效果,因此我们最后尝试了embedding外挂知识库的方式。使用开源的langchain处理文档切割、向量化存储、向量化匹配等。数据还是会暴露给OpenAI。

四、LLM现状和展望

LLM大爆发

其实在20年GPT3出来之后,机器学习的大部分头部都意识到了这条路线的可行性,积极地在跟进了:

这里专门讲下百度,据公开可靠的文档,百度早在2019年就推出了Ernie(对标谷歌Bard,Ernie和bard在动画Muppet中是1对兄弟),确实是国内最早接入LLM的玩家。百度走的和谷歌一样,是BERT的完形填空的路线,因为在2018~2019年的时间点,GPT一代刚刚问世,第一代的GPT对比各方面都不如BERT,再加上百度和谷歌一样在搜索引擎方面沉淀较多,因此选择的路线是BERT。

近期羊驼系列和国内大语言模型也在大爆发:

LLM应用现状&趋势

平台化

LLM的角色扮演能力可能是下个人机交互变革的关键点,OpenAI也推出了Plugin模型,通过插件,用户可以通过一句自然语言聊天就买一张机票,搜索想看的文章。有人说这是类似AppStore发布的IPhone时刻:

自驱动、能力集成

类似Auto-GPT,langchain等,通过约定特性的模板,可以让ChatGPT返回执行特定命令的文本,例如和ChatGPT约定如果要搜索的时候,返回[search: 搜索内容],然后在客户端通过正则匹配 /[search:(.*?)]/,拿到对应的内容执行搜索,再将结果返回给ChatGPT整理最终答案。

虚拟一个例子:

1. user: 深圳明天的天气怎么样?
2. chatgpt(触发知识限制2021年,返回约定的搜索格式):[search:2023年4月27日的深圳天气]
3. user接收到正则匹配触发搜索,打开无头浏览器搜索百度并取第1条结果:2023年4月27日星期四深圳天气:多云,北风,风向角度:0°风力1-2级,风速:3km/h,全天气温22℃~27℃,气压值:1006,降雨量:0.0mm,相对湿度:84%,能见度:25km,紫外线指数:4, 日照...
4. user(将搜索的内容连带问题第二次发给ChatGPT): 深圳明天的天气怎么样?可参考的数据:2023年4月27日星期四深圳天气:多云,北风,风向角度:0°风力1-2级,风速:3km/h,全天气温22℃~27℃,气压值:1006,降雨量:0.0mm,相对湿度:84%,能见度:25km,紫外线指数:4, 日照...
5. chatgpt(根据问题和上下文,输出人类语言的表达): 深圳明天的天气还可以,整体多云为主,气温22℃~27℃

多模态

4月份发布的GPT4已经具备图像识别的能力,下面的Case是主持人用一致设计稿草图生成前端页面的过程。经典“前端已死”时刻:

LLM的局限

虽然我们看到ChatGPT的技术强大,但是也要审慎看待它的局限,它本质上是个基于历史数据的经验主义的模仿人类的文字输出函数。

例如,ChatGPT完全做不了4位数的乘法运算,它大概率会根据6乘和7等于这2块关键信息,得到答案是以2结尾,根据4和乘以3这2块关键信息,得到答案是以1开头,而中间的随机性完全收敛不到正确的答案,不管是ChatGPT和GPT4都是一样的情况:

再比如问它特别小众、普通人也容易错的专业领域知识,它也会根据大部分普通人的错误答案输出错误答案:

比如在V8 Promise源码全面解读,其实你对Promise一无所知文章中一个很奇葩的题目,下面的代码会打印什么?

Promise.resolve().then(() => {console.log(0);return Promise.resolve(4)
}).then(res => {console.log(res);
})Promise.resolve().then(() => {console.log(1);
}).then(() => {console.log(2);
}).then(() => {console.log(3);
}).then(() => {console.log(5);
}).then(() => {console.log(6);
})

大部分人都会回答:0、1、4、2、3、5、6
GPT3.5的回答:0、1、4、2、3、5、6
GPT4的回答:0、1、2、3、4、5、6

只有GPT-4的回答正确,但是即使它的回答正确,它的具体分析也是错误,因为它可能在某个场景学习过类似答案,但是它并不“理解”,后面的分析内容也是大部分人容易错的分析

结尾

最后用流浪地球2中周喆直的台词做个结尾。

对于AI的到来,我们战略上不要高估它,AI本身有它的局限性,保持乐观,前端没那么容易死;战术重视和关注它的发展,尝试在我们的工作生活中应用,技术变革的浪潮不会随个人的意志变化。

通宵赶稿,码字不易,看到这里同学帮忙点个赞吧 Thanks♪(・ω・)ノ

作者:京东零售 陈隆德

内容来源:京东云开发者社区

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/8113.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

什么是人工智能?简单的人工智能发展史

参考资料 维基百科-人工智能史百度百科-炼金术百度百科-图灵图灵机快速入门教程百度百科-第五代计算机野心勃勃的日本第五代计算机,如何一步步走向失败(上)AI缘起-达特茅斯会议人工智能发展史Imagenet官网机器之心——专家系统炼金术与人工智能:休伯特•…

大师激辩:人工智能「性善论」——文艺复兴 or 终结者?

导读 一直以来,学界对于人工智能的生存性风险尚无定论,人工智能「性善论」是否成立?「超级智能」是否会脱离人类控制,产生伤害人类的目标?人类是否会从人工智能手中失去对未来的控制权? 上月,两…

14 张图表还原当前的 AI 地图和资本之争 | AIGC 101

推荐语 Newcomer是我一直订阅的付费专栏,作者Eric曾是科技新闻网站The Information的第一位员工,后来为彭博社(Bloomberg)写了六年关于技术行业的文章。在那段时间里,他大部分时间都在报道创业公司的来龙去脉&#xff…

MySQL 输了,PostgreSQL起航 !

来源:51CTO技术栈 在软件领域,数据库是毫无疑问的中流砥柱。在这片历史悠久、玩家众多的沃土上,流传着着无数技术和商业交织的故事。如今,老一代商业数据库日薄西山,开源数据库步步为营,处在浪潮之巅的我们…

工业机器人及工控系统

一、为什么要发展人形机器人? 中国劳动力人口数量持续下滑,美、德、日等多国具有同样趋势。根据国家统计局发布的数 据显示,2022 年我国人口从年龄构成看,16~59 岁的劳动年龄人口 8.76 亿人,占全国人口的比 重为 62.0…

AIGC令人惊叹,也令人害怕

编|Aeneas 源|新智元 ChatGPT诞生之后,用自己强悍的文本创作能力,不断刷新着我们的认知。AI即将给大学校园带来怎样的爆炸性改变?似乎还没人做好准备。Nature已经发文,担心ChatGPT会成为学生写论文的工具。…

这些你熟知的 app 和服务,都用上了人工智能

从微软在 Microsoft 365 服务中全面整合 GPT-4 能力 ,让 PPT、Word 文档、Excel 表格的制作变成了「一句话的事」,到 Adobe 刚刚发布 Adobe Firefly模型集合,让图形设计、字体风格、视频渲染乃至 3D 建模的门槛显著降低——你我熟知的那些工…

CSDN上海城市开发者社区线下活动纪实

引言 5月27号中午,很高兴能和现CSDN副总裁、前微软 Azure 工程团队首席研发经理、技术畅销书《编程之美》及《构建之法》的作者邹欣邹老师,以及CSDN的 “上海城市开发者社区” 的部分成员齐聚一堂,参加CSDN上海城市开发者社区自5月初成立以来…

中国开发者薪酬集中在 20万-34万元、Vite 爆火、Angular 下行,最新 JavaScript 年度报告重磅发布!...

整理 | 苏宓 出品 | CSDN(ID:CSDNnews) 诞生于世纪之交的 JavaScript,经历了 27 年的发展,已成为当今世界上最受开发者欢迎的编程语言之一。 近日,stateofjs.com 网站正式发布了《2022 年 JavaScript 年度调…

Voice Control for ChatGPT 沉浸式的与ChatGPT进行交流学习。

Voice Control for ChatGPT 日常生活中,我们与亲人朋友沟通交流一般都是喜欢语音的形式来完成的,毕竟相对于文字来说语音就不会显的那么的苍白无力,同时最大的好处就是能解放我们的双手吧,能更快实现两者间的对话,沟通…

语音识别之语音控制

接上文,如何实现语音控制呢?比如当我们说天气的时候,界面会自动呈现的天气预报的界面,当我们说UC的时候,会自动跳转到UC浏览器上等等。其实方法很简单,仅仅需要对识别到的字符串进行判断,当它符…

ChatGPT的焦虑蔓延,暴露了企业转型的关键要素

由美国OpenAI公司研发的聊天机器人程序ChatGPT,可以说是火遍了全网。据瑞银集团的报告显示,在ChatGPT推出仅两个月后,它在2023年1月末的月活用户已经突破了1亿,成为史上用户增长速度最快的消费级应用程序。根据Sensor Tower的数据…

如何获取ChatGPT的APIKEY

点击跳转官网,右上角个人中心查看key 进入后查看左侧API keys,点击生成即可 key已生成,即可调用API进行自主调用 API文档,点击查看 ChatGPT的API接口是基于OpenAI的GPT-3.5预训练模型,使用RESTful API架构和JSON格式进…

AutoGPT爆火,GitHub上已有42k星标,打造一款属于自己的AI助手,什么是全自动AI?ChatGPT已过时?

GitHub上线了一个新的基于GPT-4的开源应用项目AutoGPT,凭借超42k的Star数在开发者圈爆火。 AutoGPT能够根据用户需求,在用户完全不插手的情况下自主执行任务,包括日常的事件分析、营销方案撰写、代码编程、数学运算等事务都能代劳。比如某国…

【chatgbt (一)】 AI绘图 Midjourney

1. 注册一个Midjourney 账号 1.1 有一个可靠的网络环境 ( 这里的 可靠 就是 可靠的意思。你懂的) 1.2 注册一个discord账号 到这个页面就是OK了 1.3 注册一个Midjourney账号 接受邀请就到这里了 2. 画图 2.1 指令作图 进错频道发送了 /imagin 指令 机器人告诉我要去#new…

ChatGPT+Ai绘图【stable-diffusion实战】

ai绘图 stable-diffusion生成【还有很大的提升空间】 提示词1 Picture a planet where every living thing is made of light. The landscapes are breathtakingly beautiful, with mountains and waterfalls made of swirling patterns of color. What kind of societies m…

孔乙己的长衫!ChatGPT 最可能取代的 10 种工作!

所谓的【孔乙己的长衫】,是近来很火的网络热梗。它指的是,经济不好,就业形势不乐观,一些媒体就此发表看法,说现在年轻人普遍存在问题:把学历看得太重,以致于不愿意放下身段去劳动了,…

拆解追溯ChatGPT各项能力的起源

https://franxyao.github.io/blog.html 作者:符尧, yao.fued.ac.uk,爱丁堡大学 (University of Edinburgh) 博士生,本科毕业于北京大学与 彭昊,Tushar Khot在 艾伦人工智能研究院 (Allen Institute for AI) 共同完成英文原稿与 剑…

万字拆解!追溯ChatGPT各项能力的起源

导语 一篇十分深度剖析GPT系列模型的文章,作者翻译成了中文,在这里分享给大家。 来源:李rumor 作者:符尧, yao.fued.ac.uk,爱丁堡大学 (University of Edinburgh) 博士生,本科毕业于北京大学与 彭昊&#x…

阿里版ChatGPT已进入内部测试!中文聊天截图曝光!

点击“开发者技术前线”,选择“星标” 让一部分开发者看到未来 来自:量子位 | 公众号 QbitAI 谷歌硬刚ChatGPT消息一出,科技圈全坐不住了。 就在昨晚,阿里百度网易京东一众公司全宣布要推出类ChatGPT新产品,战况那叫一…