现代C++中的从头开始深度学习【2/8】:张量编程

一、说明

        初学者文本:此文本需要入门级编程背景和对机器学习的基本了解。张量是在深度学习算法中表示数据的主要方式。它们广泛用于在算法执行期间实现输入、输出、参数和内部状态。

        在这个故事中,我们将学习如何使用特征张量 API 来开发我们的C++算法。具体来说,我们将讨论:

  • 什么是张量
  • 如何在C++中定义张量
  • 如何计算张量运算
  • 张量约简和卷积

        在本文的最后,我们将实现 Softmax 作为将张量应用于深度学习算法的说明性示例。

二、什么是张量?

张量是类似网格的数据结构,它概括了任意数量的轴的向量和矩阵的概念。在机器学习中,我们通常使用“维度”这个词而不是“轴”。张量不同维度的数量也称为张量

不同秩张量

在实践中,我们使用张量来表示算法中的数据,并用它们执行算术运算。

我们可以用张量执行的更简单的操作是所谓的元素级操作:给定两个具有相同维度的操作数张量,该操作会产生一个具有相同维度的新张量,其中每个系数的值是从操作数中各个元素的二进制评估中获得的:

系数乘法

上面的例子是两个 2 秩张量的系数乘积的图示。此操作对任何两个张量仍然有效,因为它们具有相同的维度。

像矩阵一样,我们可以使用张量执行其他更复杂的操作,例如矩阵类积、卷积、收缩、约简和无数的几何运算。在这个故事中,我们将学习如何使用特征张量 API 来执行其中一些张量操作,重点介绍对深度学习算法实现最重要的操作。

三、如何在C++中声明和使用张量

        众所周知,本征是一个广泛用于矩阵计算的线性代数库。除了众所周知的对矩阵的支持之外,Eigen 还有一个(不支持的)张量模块。

虽然 Eigen Tensor API 表示不受支持,但它实际上得到了 Google TensorFlow 框架开发人员的良好支持。

        我们可以使用特征轻松定义张量:

#include <iostream>#include <unsupported/Eigen/CXX11/Tensor>int main(int, char **)
{Eigen::Tensor<int, 3> my_tensor(2, 3, 4);my_tensor.setConstant(42);std::cout << "my_tensor:\n\n" << my_tensor << "\n\n";std::cout << "tensor size is " << my_tensor.size() << "\n\n"; return 0;
}

该行

Eigen::Tensor<int, 3> my_tensor(2, 3, 4);

创建一个张量对象并分配存储整数所需的内存。在此示例中,是一个 3 秩张量,其中第一维的大小为 2,第二维的大小为 3,最后一维的大小为 4。我们可以表示如下:2x3x4my_tensormy_tensor

如果需要,我们可以设置张量数据:

my_tensor.setValues({{{1, 2, 3, 4}, {5, 6, 7, 8}}});std::cout << "my_tensor:\n\n" << my_tensor << "\n\n";

或改用随机值。例如,我们可以做:

Eigen::Tensor<float, 2> kernel(3, 3);
kernel.setRandom();
std::cout << "kernel:\n\n" << kernel << "\n\n";

        并在以后使用此内核来执行卷积。我们将很快在这个故事中介绍卷积。首先,让我们学习如何使用TensorMaps。

四、使用 Eigen::TensorMap 创建张量视图

有时,我们分配了一些数据,只想使用张量来操作它。 类似于 但是,它不是分配新数据,而只是作为参数传递的数据的视图。检查以下示例:Eigen::TensorMapEigen::Tensor

//an vector with size 12
std::vector<float> storage(4*3);// filling vector from 1 to 12
std::iota(storage.begin(), storage.end(), 1.);for (float v: storage) std::cout << v << ','; 
std::cout << "\n\n";// setting a tensor view with 4 rows and 3 columns
Eigen::TensorMap<Eigen::Tensor<float, 2>> my_tensor_view(storage.data(), 4, 3);std::cout << "my_tensor_view before update:\n\n" << my_tensor_view << "\n\n";// updating the vector
storage[4] = -1.;std::cout << "my_tensor_view after update:\n\n" << my_tensor_view << "\n\n";// updating the tensor
my_tensor_view(2, 1) = -8;std::cout << "vector after two updates:\n\n";
for (float v: storage) std::cout << v << ','; 
std::cout << "\n\n";

在这个例子中,很容易看出(默认情况下)特征张量 API 中的张量是 col-major。col-major和row-major是指网格数据如何存储在线性容器中的方式(查看维基百科上的这篇文章):

虽然我们可以使用行大张量,但不建议这样做:

目前仅完全支持默认列主布局,因此目前不建议尝试使用行主布局。

Eigen::TensorMap非常有用,因为我们可以使用它来节省内存,这对于深度学习算法等高要求的应用程序至关重要。

五、执行一元和二进制操作

        特征张量 API 定义了常见的算术重载运算符,这使得对张量进行编程非常直观和直接。例如,我们可以加减张量:

Eigen::Tensor<float, 2> A(2, 3), B(2, 3);
A.setRandom();
B.setRandom();Eigen::Tensor<float, 2> C = 2.f*A + B.exp();std::cout << "A is\n\n"<< A << "\n\n";
std::cout << "B is\n\n"<< B << "\n\n";
std::cout << "C is\n\n"<< C << "\n\n";

特征张量 API 还有其他几个元素级函数,如 、 和 。此外,我们可以按如下方式使用:.exp()sqrt()log()abs()unaryExpr(fun)

auto cosine = [](float v) {return cos(v);};
Eigen::Tensor<float, 2> D = A.unaryExpr(cosine);
std::cout << "D is\n\n"<< D << "\n\n";

同样,我们可以使用:binaryExpr

auto fun = [](float a, float b) {return 2.*a + b;};
Eigen::Tensor<float, 2> E = A.binaryExpr(B, fun);
std::cout << "E is\n\n"<< E << "\n\n";

六、惰性求值和 auto 关键字

开发Eigen Tensor API的Google工程师遵循了与Eigen库顶部相同的策略。这些策略之一,也可能是最重要的策略,是如何延迟计算表达式的方式。

惰性求值策略包括延迟表达式的实际求值,以便将多个链式表达式组合到一个优化的等效表达式中。因此,优化的代码不是逐步计算多个单独的表达式,而是只计算一个表达式,旨在利用最终的整体性能。

例如,如果 和 是张量,则表达式实际上并不计算 A 和 B 的总和。实际上,该表达式会产生一个知道如何计算的特殊对象。仅当将此特殊对象分配给实际张量时,才会执行实际操作。换句话说,在下面的语句中:ABA + BA + BA + B

auto C = A + B;

C不是实际结果,而只是一个知道如何计算的计算对象(确实是一个对象)。只有当分配给张量对象(类型、、等的对象)时,才会对其进行评估以提供正确的张量值:A + BEigen::TensorCwiseBinaryOpA + BCEigen::TensorEigen::TensorMapEigen::TensorRef

Eigen::Tensor<...> T = C;
std::cout << "T is " << T << "\n\n";

当然,这对于像 这样的小型操作没有意义。但是,此行为对于长操作链非常有用,在这些操作链中,可以在实际评估之前优化计算。在简历中,作为一般准则,而不是编写这样的代码:A + B

Eigen::Tensor<...> A = ...;
Eigen::Tensor<...> B = ...;
Eigen::Tensor<...> C = B * 0.5f;
Eigen::Tensor<...> D = A + C;
Eigen::Tensor<...> E = D.sqrt();

我们应该编写这样的代码:

Eigen::Tensor<...> A = ...;
Eigen::Tensor<...> B = ...;
auto C = B * 0.5f;
auto D = A + C;
Eigen::Tensor<...> E = D.sqrt();

不同之处在于,在前者中,实际上是对象,而在后面的代码中,它们只是惰性计算操作。CDEigen::Tensor

在恢复中,最好使用惰性计算来评估长操作链,因为该链将在内部进行优化,最终导致更快的执行。

七、几何运算

几何运算会产生具有不同维度的张量,有时还会产生大小。这些操作的示例包括:、、、 和 。reshapepadshufflestridebroadcast

值得注意的是,特征张量 API 没有操作。不过,我们可以使用以下方法进行模拟:transposetransposeshuffle

auto transpose(const Eigen::Tensor<float, 2> &tensor) {Eigen::array<int, 2> dims({1, 0});return tensor.shuffle(dims);
}Eigen::Tensor<float, 2> a_tensor(3, 4);
a_tensor.setRandom();std::cout << "a_tensor is\n\n"<< a_tensor << "\n\n";
std::cout << "a_tensor transpose is\n\n"<< transpose(a_tensor) << "\n\n";

稍后,当我们讨论使用张量的示例时,我们将看到一些几何运算的示例。softmax

八、规约(reduce)

        归约是一种特殊操作情况,它会导致张量的维数低于原始张量。减少的直观案例是:sum()maximum()

Eigen::Tensor<float, 3> X(5, 2, 3);
X.setRandom();std::cout << "X is\n\n"<< X << "\n\n";std::cout << "X.sum(): " << X.sum() << "\n\n";
std::cout << "X.maximum(): " << X.maximum() << "\n\n";

在上面的示例中,我们缩小了所有尺寸一次。我们还可以沿特定轴执行缩减。例如:

Eigen::array<int, 2> dims({1, 2});std::cout << "X.sum(dims): " << X.sum(dims) << "\n\n";
std::cout << "X.maximum(dims): " << X.maximum(dims) << "\n\n";

        特征张量 API 具有一组预构建的归约操作,例如、、、等。如果任何预构建的操作不适合特定实现,我们可以使用提供自定义函子作为参数。prodanyallmeanreduce(dims, reducer)reducer

九、张量卷积

        在前面的一个故事中,我们学习了如何仅使用普通C++和特征矩阵来实现 2D 卷积。事实上,这是必要的,因为在本征矩阵中没有内置的矩阵卷积。幸运的是,特征张量 API 有一个方便的函数来对特征张量对象执行卷积:

Eigen::Tensor<float, 4> input(1, 6, 6, 3);
input.setRandom();Eigen::Tensor<float, 2> kernel(3, 3);
kernel.setRandom();Eigen::Tensor<float, 4> output(1, 4, 4, 3);Eigen::array<int, 2> dims({1, 2});
output = input.convolve(kernel, dims);std::cout << "input:\n\n" << input << "\n\n";
std::cout << "kernel:\n\n" << kernel << "\n\n";
std::cout << "output:\n\n" << output << "\n\n";

请注意,我们可以通过控制卷积中幻灯片的尺寸来执行 2D、3D、4D 等卷积。

十、带张量的软最大值

        在编程深度学习模型时,我们使用张量而不是矩阵。事实证明,矩阵可以表示一个或最多二维网格,同时我们有更高维度的数据多通道图像或批量寄存器来处理。这就是张量发挥作用的地方。

        让我们考虑以下示例,其中我们有两批寄存器,每批有 4 个寄存器,每个寄存器有 3 个值:

        我们可以按如下方式表示这些数据:

Eigen::Tensor<float, 3> input(2, 4, 3);
input.setValues({{{0.1, 1., -2.},{10., 2., 5.},{5., -5., 0.},{2., 3., 2.}},{{100., 1000., -500.},{3., 3., 3.},{-1, 1., -1.},{-11., -0.2, -.1}}
});std::cout << "input:\n\n" << input << "\n\n";

        现在,让我们应用于此数据:softmax

Eigen::Tensor<float, 3> output = softmax(input);
std::cout << "output:\n\n" << output << "\n\n";

        Softmax是一种流行的激活功能。我们在上一个故事中介绍了它的实现。现在,让我们介绍一下实现:Eigen::MatrixEigen::Tensor

#include <unsupported/Eigen/CXX11/Tensor>auto softmax(const Eigen::Tensor<float, 3> &z)
{auto dimensions = z.dimensions();int batches = dimensions.at(0);int instances_per_batch = dimensions.at(1);int instance_length = dimensions.at(2);Eigen::array<int, 1> depth_dim({2});auto z_max = z.maximum(depth_dim);Eigen::array<int, 3> reshape_dim({batches, instances_per_batch, 1});auto max_reshaped = z_max.reshape(reshape_dim);Eigen::array<int, 3> bcast({1, 1, instance_length});auto max_values = max_reshaped.broadcast(bcast);auto diff = z - max_values;auto expo = diff.exp();auto expo_sums = expo.sum(depth_dim);auto sums_reshaped = expo_sums.reshape(reshape_dim);auto sums = sums_reshaped.broadcast(bcast);auto result = expo / sums;return result;
}

        此代码输出:

        我们不会在这里详细介绍 Softmax。如果您需要查看Softmax算法,请不要犹豫,在Medium上再次阅读之前的故事。现在,我们只专注于了解如何使用特征张量来编码我们的深度学习模型。

        首先要注意的是,该函数实际上并没有计算参数的softmax值。实际上,只挂载一个可以计算softmax的复杂对象。softmax(z)zsoftmax(z)

        仅当 的结果分配给类似张量的对象时,才会评估实际值。例如,在这里:softmax(z)

Eigen::Tensor<float, 3> output = softmax(input);

        在这一行之前,一切都只是softmax的计算图,希望得到优化。发生这种情况只是因为我们在 的正文中使用了关键字。因此,特征张量 API 可以优化使用更少操作的整个计算,从而改善处理和内存使用。autosoftmax(z)softmax(z)

        在结束这个故事之前,我想指出和呼吁:tensor.reshape(dims)tensor.broadcast(bcast)

Eigen::array<int, 3> reshape_dim({batches, instances_per_batch, 1});
auto max_reshaped = z_max.reshape(reshape_dim);Eigen::array<int, 3> bcast({1, 1, instance_length});
auto max_values = max_reshaped.broadcast(bcast);

  reshape(dims)是一种特殊的几何运算,它生成另一个张量,其大小与原始张量相同,但尺寸不同。重塑不会在张量内部更改数据的顺序。例如:

Eigen::Tensor<float, 2> X(2, 3);
X.setValues({{1,2,3},{4,5,6}});std::cout << "X is\n\n"<< X << "\n\n";std::cout << "Size of X is "<< X.size() << "\n\n";Eigen::array<int, 3> new_dims({3,1,2});
Eigen::Tensor<float, 3> Y = X.reshape(new_dims);std::cout << "Y is\n\n"<< Y << "\n\n";std::cout << "Size of Y is "<< Y.size() << "\n\n";

Note that, in this example, the size of X and Y is either 6 although they have very different geometry.

tensor.broadcast(bcast) repeats the tensor as many times as provided in the parameter for each dimension. For example:bcast

Eigen::Tensor<float, 2> Z(1,3);
Z.setValues({{1,2,3}});
Eigen::array<int, 2> bcast({4, 2});
Eigen::Tensor<float, 2> W = Z.broadcast(bcast);std::cout << "Z is\n\n"<< Z << "\n\n";
std::cout << "W is\n\n"<< W << "\n\n";

不同的 ,不会改变张量秩(即维数),而只会增加维数的大小。reshapebroadcast

十一、局限性

特征张量 API 文档引用了一些我们可以意识到的限制:

  • GPU 支持经过测试并针对浮点类型进行了优化。即使我们可以声明,在使用 GPU 时也不鼓励使用非浮点张量。Eigen::Tensor<int,...> tensor;
  • 默认布局(col-major)是唯一实际支持的布局。至少现在我们不应该使用行专业。
  • 最大尺寸数为 250。只有在使用 C++11 兼容的编译器时才能实现此大小。

十二、结论和下一步

        张量是机器学习编程的基本数据结构,使我们能够像使用常规二维矩阵一样直接地表示和处理多维数据。

在这个故事中,我们介绍了特征张量 API,并学习了如何相对轻松地使用张量。我们还了解到,特征张量 API 具有惰性评估机制,可以在内存和处理时间方面优化执行。

为了确保我们真正理解Eigen Tensor API的用法,我们介绍了一个使用张量编码Softmax的示例。

在接下来的故事中,我们将继续使用 C++ 和特征从头开始开发高性能深度学习算法,特别是使用 Eigen Tensor API。

十三、github代码

您可以在 GitHub 上的此存储库中找到此故事中使用的代码。

十四、引用

[1] 特征张量 API

[2] 特征张量模块

[3] Eigen Gitlab repository, libeigen / eigen · GitLab

[4] Charu C. Aggarwal, Neural Networks and Deep Learning: A Textbook (2018), Springer

[5] Jason Brownlee,A Gentle Introduction to Tensors for Machine Learning with NumPy

关于本系列

在本系列中,我们将学习如何仅使用普通和现代C++对必须知道的深度学习算法进行编码,例如卷积、反向传播、激活函数、优化器、深度神经网络等。

这个故事是:使用特征张量API

查看其他故事:

0 — 现代C++深度学习编程基础

1 — 在纯C++中编码 2D 卷积

2 — 使用 Lambda 的成本函数

3 — 实现梯度下降

4 — 激活函数

...更多内容即将推出。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/82121.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

gradle 命令行单元测试执行问题

文章目录 问题&#xff1a;命令行 执行失败最终解决方案&#xff08;1&#xff09;ADB命令&#xff08;2&#xff09;Java 环境配置 问题&#xff1a;命令行 执行失败 命令行 执行测试命令 无法使用&#xff08;之前还能用的。没有任何改动&#xff0c;又不能用了&#xff09; …

Learning Rich Features for Image Manipulation Detection阅读笔记

文章目录 Abstract3.3. 双线性池 Abstract 图像篡改检测与传统的语义目标检测&#xff08;semantic object detection&#xff09;不同&#xff0c;因为它更关注篡改伪影&#xff08;tampering artifacts&#xff09;而不是图像内容&#xff0c;这表明需要学习更丰富的特征。我…

微服务架构基础--第3章Spring Boot核心功能讲解

第3章Spring Boot核心功能讲解 一.预习笔记 1.使用maven创建SpringBoot项目 1-1:创建一个maven项目 1-2:在pom文件中导入依赖 1-3&#xff1a;编写启动类&#xff08;注意启动类的位置&#xff09; 1-4&#xff1a;编写测试类 1-5&#xff1a;运行SpringBoot启动类 2.了解p…

JPA实现存储实体类型信息

本文已收录于专栏 《Java》 目录 背景介绍概念说明DiscriminatorValue 注解&#xff1a;DiscriminatorColumn 注解&#xff1a;Inheritance(strategy InheritanceType.SINGLE_TABLE) 注解&#xff1a; 实现方式父类子类执行效果 总结提升 背景介绍 在我们项目开发的过程中经常…

大模型AI人才培养研习会,上海、武汉站同期招募!

伴随预训练大语言模型技术引发的产业变革&#xff0c;市场对AI人才需求也同样发生着深刻变化&#xff0c;教育迎来了新的机遇与挑战。由中国自动化学会主办&#xff0c;百度公司联合知名高校承办的大模型AI人才培养研习会&#xff0c;首场将于8月19日在武汉、上海双城同期举办&…

flutter-GridView使用

先看效果 代码实现 import package:app/common/util/k_log_util.dart; import package:app/gen/assets.gen.dart; import package:app/pages/widget/top_appbar.dart; import package:flutter/cupertino.dart; import package:flutter/material.dart; import package:flutter_…

iOS 实现图片高斯模糊效果

效果图 用到了 UIVisualEffectView 实现代码 - (UIVisualEffectView *)bgEffectView{if(!_bgEffectView){UIBlurEffect *blur [UIBlurEffect effectWithStyle:UIBlurEffectStyleLight];_bgEffectView [[UIVisualEffectView alloc] initWithEffect:blur];}return _bgEffect…

吃瓜教程-Task05

目录 支持向量机 间隔与支持向量 SVM基本型 对偶问题 kkt条件 例子 对偶问题 例子 对偶问题原理解释 软间隔与正则化 替代损失函数 支持向量回归 例子 支持向量机 间隔与支持向量 在样本空间中&#xff0c;划分超平面可通过如下线性方程来描述: 样本空间中任意点x到…

在软件测试中,如何有效地跟踪和管理缺陷?

在软件测试中&#xff0c;跟踪和管理缺陷是非常重要的&#xff0c;因为这有助于确保所有问题得到妥善处理&#xff0c;避免在产品发布后出现问题。以下是跟踪和管理缺陷的一些有效方法&#xff1a; 1.创建缺陷报告&#xff1a;当发现一个缺陷时&#xff0c;应该立即创建一个缺…

无涯教程-Perl - binmode函数

描述 此函数设置在区分两者的操作系统上以二进制形式读取和写入FILEHANDLE的格式。非二进制文件的CR LF序列在输入时转换为LF,在LF时在输出时转换为CR LF。这对于使用两个字符分隔文本文件中的行的操作系统(MS-DOS)至关重要,但对使用单个字符的操作系统(Unix,Mac OS,QNX)没有影…

《合成孔径雷达成像算法与实现》Figure3.4

代码对补零信号与未补零信号都进行了实现&#xff0c;补零信号更加贴近书中图3.4的样子&#xff1a; clc clear all close all%参数设置 TBP 100; %时间带宽积 T 10e-6; %脉冲持续时间 alpha_os [1.4,1.2,1.0,0…

电脑开不了机如何解锁BitLocker硬盘锁

事情从这里说起&#xff0c;不想看直接跳过 早上闲着无聊&#xff0c;闲着没事干&#xff0c;将win11的用户名称改成了含有中文字符的用户名&#xff0c;然后恐怖的事情发生了&#xff0c;蓝屏了… 然后就是蓝屏收集错误信息&#xff0c;重启&#xff0c;蓝屏收集错误信息&…

可靠传输概述——停止-等待协议

基本概念&#xff1a; 使用差错检测技术&#xff08;例如循环冗余校验CRC&#xff09;&#xff0c;接收方的数据链路层就可检测出帧在传输过程中是否出现了误码。 此时有&#xff1a; 不可靠传输服务&#xff1a;仅仅丢弃有误码的帧&#xff0c;其他什么也不做 可靠传输服务&a…

IDEA常用插件介绍

1.CodeGlance&#xff08;CodeGlance Pro&#xff09; 安装后&#xff0c;重新启动编译器即可。 CodeGlance是一款非常好用的代码地图插件&#xff0c;可以在代码编辑区的右侧生成一个竖向可拖动的代码缩略区&#xff0c;可以快速定位代码的同时&#xff0c;并且提供放大镜功能…

JVM 学习—— 类加载机制

前言 在上一篇文章中&#xff0c;荔枝梳理了有关Java中JVM体系架构的相关知识&#xff0c;其中涉及到的有关Java类加载机制的相关知识并没有过多描述。那么在这篇文章中&#xff0c;荔枝会详细梳理一下有关JVM的类加载机制和双亲委派模型的知识&#xff0c;希望能够帮助到有需要…

Protues如何安装下载使用:STM32利用Protues进行仿真

文章目录&#xff1a; 一&#xff1a;Proteus仿真的使用步骤 第一步&#xff1a;Proteus新建项目 第二步&#xff1a;Proteus设计电路图&#xff08;选取元器件、摆放元器件、编辑元器件属性、原理图布线&#xff09; 第三步&#xff1a;程序代码编写 第四步&#xff1a;…

Visual Studio 2022安装

Visual Studio下载网址

Netty 4.1.95.Final 正式发布,Java 网络应用框架

导读Netty 4.1.95 稳定版已发布。Netty 是一个异步事件驱动的网络应用框架&#xff0c;主要用于可维护的高性能协议服务器和客户端的快速开发。 此版本主要是修复错误&#xff0c;同时添加了一些新特性&#xff1a; 添加资源泄漏侦听器 (resource leak listener) (#13466)减少…

【云原生•监控】基于Prometheus实现自定义指标弹性伸缩(HPA)

【云原生•监控】基于Prometheus实现自定义指标弹性伸缩(HPA) 什么是弹性伸缩 「Autoscaling即弹性伸缩&#xff0c;是Kubernetes中的一种非常核心的功能&#xff0c;它可以根据给定的指标&#xff08;例如 CPU 或内存&#xff09;自动缩放Pod副本&#xff0c;从而可以更好地管…

应用在多媒体手机中的低功率立体声编解码器

多媒体手机一般是指可以录制或播放视频的手机。多媒体的定义是多种媒体的综合&#xff0c;一般是图像、文字、声音等多种结合&#xff0c;所以多媒体手机是可以处理和使用图像文字声音相结合的移动设备。目前流行的多媒体概念&#xff0c;主要是指文字、图形、图像、声音等多种…