【LangChain学习】基于PDF文档构建问答知识库(三)实战整合 LangChain、OpenAI、FAISS等

接下来,我们开始在web框架上整合 LangChain、OpenAI、FAISS等。

一、PDF库

因为项目是基于PDF文档的,所以需要一些操作PDF的库,我们这边使用的是PyPDF2

from PyPDF2 import PdfReader# 获取pdf文件内容
def get_pdf_text(pdf):text = ""pdf_reader = PdfReader(pdf)for page in pdf_reader.pages:text += page.extract_text()return text

传入 pdf 文件路径,返回 pdf 文档的文本内容。

二、LangChain库

1、文本拆分器

首先我们需要将第一步拿到的本文内容拆分,我们使用的是 RecursiveCharacterTextSplitter ,默认使用 ["\n\n","\n"," "] 来分割文本。

from langchain.text_splitter import RecursiveCharacterTextSplitter# 拆分文本
def get_text_chunks(text):text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000,# chunk_size=768,chunk_overlap=200,length_function=len)chunks = text_splitter.split_text(text)return chunks

其中这里 chunk_size 参数要注意,这里是指文本块的最大尺寸,如果用chatgpt3.5会在问答的时候容易出现token长度超过4096的异常,这个后面会说如何调整,只需要换一下模型就好了。

这个参数对于向量化来说,比较重要,因为到时候喂给OpenAI去分析的时候,携带的上下文内容就会比较多,这样准备性和语义分析上也有不少的帮助。

2、向量库

项目使用 FAISS,就是将 pdf 读取到的文本向量化以后,通过 FAISS 保存到本地,后续就不需要再执行向量化,就可以读取之前的备份。

from langchain.vectorstores import FAISS
from langchain.embeddings import OpenAIEmbeddings# 保存
def save_vector_store(textChunks):db = FAISS.from_texts(textChunks, OpenAIEmbeddings())db.save_local('faiss')# 加载
def load_vector_store():return FAISS.load_local('faiss', OpenAIEmbeddings())

其中 faiss 参数为保存的目录名称,默认在项目同级目录下生成。

这里使用 OpenAI 的方法 OpenAIEmbeddings 来进行向量化。

3、检索型问答链

from langchain.chains import RetrievalQA
from langchain.chat_models import ChatOpenAI
from langchain.prompts import PromptTemplate# 获取检索型问答链
def get_qa_chain(vector_store):prompt_template = """基于以下已知内容,简洁和专业的来回答用户的问题。如果无法从中得到答案,清说"根据已知内容无法回答该问题"答案请使用中文。已知内容:{context}问题:{question}"""prompt = PromptTemplate(template=prompt_template,input_variables=["context", "question"])return RetrievalQA.from_llm(llm=ChatOpenAI(model_name='gpt-3.5-turbo-16k'), retriever=vector_store.as_retriever(), prompt=prompt)

1)RetrievalQA 检索行问答链

这里使用 RetrievalQA,这种链的缺点是一问一答,是没有history的,是单轮问答。

2)自定义提示 PromptTemplate

这里还是使用到自定义提示 PromptTemplate,主要作用是使 OpenAI 能根据我们传入的向量文本为蓝本,限制它的回答范围,并要求使用中文回答。这样的好处在于,如果我们问一些非 pdf 涉及的内容,OpenAI 会返回无法作答,而不是根据自己的大模型数据来回答问题。

3)llm 模型

我们还是用 Chat 模型作为 llm 的输入模型,这里可以看到,我们使用的 model 为 gpt-3.5-turbo-16k,它可以支持 16384 个tokens,而 gpt-3.5-turbo 只支持 4096 个tokens

所以这里就回答了上面文本拆分器 chunk_size 参数,如果使用 gpt-3.5-turbo 模型,笔者尝试过,最大可能就是只能到 768,不过这个具体要看向量化以后,携带的文本的大小tokens而定。

不过使用 gpt-3.5-turbo-16k 也是有代价的,就是它比  gpt-3.5-turbo 要贵,大概是2倍的价格。

三、路由整合

我们将上面实现的三个工具方法整合到路由,主要实现 pdf 文件的本地向量初始化,还有基于向量化的 pdf 文档内容进行问答。

from fastapi import APIRouter, Body
from ..util import pdf, langchain, fassrouter = APIRouter(prefix="/chat"
)# 初始化pdf文件
@router.get("/init_pdf")
async def init_pdf():# pfd文件路径pdf_doc = "xxx.pdf"# get pdf textraw_text = pdf.get_pdf_text(pdf_doc)# get the text chunkstext_chunks = openai.get_text_chunks(raw_text)# savefass.save_vector_store(text_chunks)return {'success': True}# 问答
@router.post("/question")
async def question(text: str = Body(embed=True)
):vector_store = fass.load_vector_store()chain = langchain.get_qa_chain(vector_store)response = chain({"query": text})return {'success': True, "code": 0, "reply": response}

1)初始化 pdf 文件

执行接口不报错的话,会看到项目同级目录下会多了一个 faiss 目录,里面包括两个索引文件。

 2)配置 OpenAI 

因为项目使用到 OpenAI 的接口,所以我们这边需要全局配置 api-key,还有我们云函数上的代理地址。

from fastapi import FastAPI
from app.routers import chat
import sys
import os
from dotenv import load_dotenv, find_dotenv
import openaiload_dotenv(find_dotenv())
openai.api_key = os.getenv("OPENAI_API_KEY")
openai.api_base = os.getenv("OPENAI_API_BASE")# 防止相对路径导入出错
sys.path.append(os.path.join(os.path.dirname(__file__)))app = FastAPI()# 将其余单独模块进行整合
app.include_router(chat.router)

 调整后的 main.py 文件如上图,项目中需要加入 .env 文件

OPENAI_API_KEY=
OPENAI_API_BASE=https://xxxxxx/v1

要注意api_base的地址后面,一般云函数地址的后面要加上 /v1 

四、运行和测试

至此,一个简单的基于 LangChain 库的 PDF文档问答就完成了,我们随便拿一份网上能找到保险pdf做个实验,看看效果如何

我们就来问 pdf 中的这段内容,问题是 "风险的特征有哪些?"

 我们来看看回复,几个大的要点也基本答上来了,效果也算可以了。

{"success": true,"code": 0,"reply": {"query": "风险的特征有哪些?","result": "风险的特征包括以下几个方面:\n1. 风险的客观性:风险是一种客观存在,与人的意志无关,独立于人的意识之外的客观存在。\n2. 风险的普遍性:在社会经济生活中,人们面临各种各样的风险,从个人、企业到国家和政府机关都无处不在。\n3. 风险的损害性:风险与人们的经济利益密切相关,会给人们的经济造成损失以及对人的生命造成伤害。\n4. 某一风险发生的不确定性:虽然风险是客观存在的,但对某一具体风险而言,其发生是偶然的,是一种随机现象。\n5. 总体风险发生的可测性:虽然个别风险事故的发生是偶然的,但大量风险事故往往呈现出明显的规律性,可以通过统计方法进行准确测量。"}
}

我们再尝试问一些不在 pdf 里的问题,"如何评价中国足球"

{"success": true,"code": 0,"reply": {"query": "如何评价中国足球","result": "根据已知内容无法回答该问题。"}
}

这跟我们上面 自定义提示 PromptTemplate 的内容是一致的。

最后附上 仓库地址

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/83658.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

建材陶瓷片机器视觉定位软硬件方案

【检测目的】 建材陶瓷片机器视觉定位 【检测要求】 精度0.02mm 产品大小:60mm—70mm 颜色为:白、绿两种 5S图像处理时间 【拍摄效果图一】 上料位 【拍摄效果图二】 上料位 【拍摄效果图三】 上料位 【拍摄效果图四】 上料位 【硬件配置】 外框 …

C++初阶——函数重载

前言:C中除了可以在不同的命名空间中使用同名函数,还有一种支持在同一个作用域中同名函数的方式——函数重载。 函数重载 一.什么是函数重载?二.函数重载的3种规则三.特殊情况 一.什么是函数重载? C允许同样同一作用域中声明几个功…

爬虫ip池越大越好吗?

作为一名资深的程序员,今天我要给大家分享一些关于爬虫ip池的知识。关于ip代理池的问题,答案是肯定的,池子越大越好。下面跟我一起来盘点一下ip池大的好处吧! 1、提高稳定性 爬虫ip池越大,意味着拥有更多可用的爬虫ip…

HCIA---路由器--静态路由

提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档 文章目录 目录 一.路由器简介 二.路由器转发原理 三.骨干链路 四.路由分类 五.静态路由 总结 一.路由器简介 路由器是一种网络设备,用于将数据包从一个网络发送…

【Linux】UDP协议——传输层

目录 传输层 再谈端口号 端口号范围划分 认识知名端口号 两个问题 netstat与iostat pidof UDP协议 UDP协议格式 UDP协议的特点 面向数据报 UDP的缓冲区 UDP使用注意事项 基于UDP的应用层协议 传输层 在学习HTTP等应用层协议时,为了便于理解&#xff…

git的简单介绍和使用

git学习 1. 概念git和svn的区别和优势1.1 区别1.2 git优势 2. git的三个状态和三个阶段2.1 三个状态:2.2 三个阶段: 3. 常用的git命令3.1 下面是最常用的命令3.2 git命令操作流程图如下: 4. 分支内容学习4.1 项目远程仓库4.2 项目本地仓库4.3…

线上电影购票选座H5小程序源码开发

搭建一个线上电影购票选座H5小程序源码需要一些基本的技术和步骤。以下是一个大致的搭建过程,可以参考: 1. 确定需求和功能:首先要明确你想要的电影购票选座H5小程序的需求和功能,例如用户登录注册、电影列表展示、选座购票、订单…

编程中的宝藏:二分查找

二分查找 假设你需要在电话簿中找到一个以字母 “K” 开头的名字(虽然现在谁还在用电话簿呢!)。你可以从头开始翻页,直到进入以 “K” 打头的部分。然而,更明智的方法是从中间开始,因为你知道以 “K” 打头…

Unity游戏源码分享-仿开心消消乐Match3Jewel

Unity游戏源码分享-仿开心消消乐Match3Jewel 工程地址: https://download.csdn.net/download/Highning0007/88198762

Oracle DB 安全性 : TDE HSM TCPS Wallet Imperva

• 配置口令文件以使用区分大小写的口令 • 对表空间进行加密 • 配置对网络服务的细粒度访问 TCPS 安全口令支持 Oracle Database 11g中的口令: • 区分大小写 • 包含更多的字符 • 使用更安全的散列算法 • 在散列算法中使用salt 用户名仍是Oracle 标识…

嵌入式开发:高薪与广阔前景

嵌入式开发是高薪且前景广阔的领域。随着物联网和智能化的快速发展,嵌入式开发人才需求不断增加,市场供应相对不足,导致竞争激烈,推动了薪资水平的提升。 嵌入式开发的复杂性和技术要求使得企业为了吸引优秀人才,普遍…

Java一般用于postgis空间数据库通用的增删查改sql命令

目录 1 增加 2 删除 3 查询 4 更新 "public"."JGSQGW_Geo"为某模式下得表 一般postgrel有这样的设计模式 1 增加 #前端绘制出的数据插入 INSERT INTO "public"."JGSQGW_Geo" ( "geom","gridone","gridon…

Zookeeper特性与节点数据类型详解

CAP&Base理论 CAP理论 cap理论是指对于一个分布式计算系统来说,不可能满足以下三点: 一致性 : 在分布式环境中,一致性是指数据在多个副本之间是否能够保持一致的 特性,等同于所有节点访问同一份最新的数据副本。在一致性的需…

【积水成渊】uniapp高级玩法分享

大家好,我是csdn的博主:lqj_本人 这是我的个人博客主页: lqj_本人_python人工智能视觉(opencv)从入门到实战,前端,微信小程序-CSDN博客 最新的uniapp毕业设计专栏也放在下方了: https://blog.csdn.net/lbcy…

golang学习随记

提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档 文章目录 go学习快捷键及快速生成代码片段go基础循环流程控制关键字切片,拷贝函数闭包 defer语句格式化输出go语言随机数rand.seed() 包管理并发编程goroutinecha…

Java经典面试题总结(一)

Java经典面试题总结(一) 题一:Java编译运行原理题二:JDK,JVM,JRE三者之间的关系题三:谈一下对冯诺依曼体系的了解题四:重载与重写的区别题五:拆箱装箱是指什么&#xff1…

《OWASP代码审计》学习——跨站脚本注入(XSS)

一、跨站脚本概述 1.什么是跨站脚本 跨站点脚本(XSS)是一种编码注入漏洞。它通常出现在 web 应用程序中。XSS 使攻击者能够向其他用户浏览的网页中注入恶意内容。XSS 允许攻击者绕过访问控制,它是 OWASP Top10 最常见的漏洞之一。XSS 是网络服务器上的第二大漏洞。…

C# OpenCvSharp 去水印 图像修复

效果 项目 VS2022.net4.8OpenCvSharp4 代码 using System; using System.Collections.Generic; using System.ComponentModel; using System.Data; using System.Drawing; using System.IO; using System.Linq; using System.Security.Cryptography; using System.Text; usi…

【Windows10下启动RocketMQ报错:找不到或无法加载主类 Files\Java\jdk1.8.0_301\lib\dt.jar】解决方法

Windows10下启动RocketMQ报错:找不到或无法加载主类 一、问题产生二、产生原因三、解决办法 一、问题产生 参考RocketMQ Github官网上的说明,下载rocketmq-all-5.1.3-bin-release.zip,解压配置环境变量后,执行如下命令&#xff1a…

【C++11】列表初始化 | decltype操作符 | nullptr | STL的更新

文章目录 一.列表初始化1. 花括号初始化2. initializer_list 二.decltype三.nullptr四.STL的更新1.STL新增容器2.字符串转换函数3.容器中的一些新方法 一.列表初始化 1. 花括号初始化 { }的初始化 C98中,标准允许使用大括号{}对数组或者结构体元素进行统一的列表初…