数据分析-python学习 (1)numpy相关

内容为:https://juejin.cn/book/7240731597035864121的学习笔记

导包
import numpy as np  

numpy数组创建

  • 创建全0数组,正态分布、随机数组等就不说了,提供了相应的方法
  • 通过已有数据创建有两种 arr1=np.array([1,2,3,4,5]) 或者data=np.loadtxt(‘C:/Users/000001_all.csv’,dtype=‘float’,delimiter=‘,’,skiprows=1) (data=np.genfromtxt(‘C:/Users/000001_all.csv’,dtype=‘float32’,delimiter=‘,’,skip_header=1) )
  • 注意浅拷贝与深拷贝 array copy是深,asarray是浅
import numpy as np  
arr1=np.array([1,2,3,4,5])  
arr2=np.array(arr1)  
arr3=np.asarray(arr1)  
arr4=np.copy(arr1)  
arr1[0]=100  
print('更改后arr2为:',arr2)  
print('更改后arr3为:',arr3)  
print('更改后arr4为:',arr4)更改后arr2为: [1 2 3 4 5]
更改后arr3为: [100   2   3   4   5]
更改后arr4为: [1 2 3 4 5]
  • 数组的切片也是浅拷贝
Score=np.array([69,80,90,40,60,20,90,94,90,99])#学生的成绩Score[:3]=0print('修改切片对象成绩后的Score为',Score)Score1=[69,80,90,40,60,20,90,94,90,99]Score1_list=Score1[:3]Score1_list=0print('修改Score1_list后的Score1为',Score1)修改切片对象成绩后的Score为 [ 0  0  0 40 60 20 90 94 90 99]
修改Score1_list后的Score1为 [69, 80, 90, 40, 60, 20, 90, 94, 90, 99]

索引的访问

访问某个下标(一个元素)得到的也是一个数值;如果访问的是多个下标,得到的是一个数组

一维

在这里插入图片描述

二维

Score2=np.array([[69,40,30],[80,90,40],[90,100,50],[40,20,99],[60,60,66],[20,66,44],[90,88,56],[94,99,67],[90,20,70],[99,50,86]])print('学号为1的同学的语文和英语成绩为',Score2[[0,0],[0,2]])
学号为 1 的同学的语文和英语成绩为 [69 30]

在这里插入图片描述

三维

Space=np.array([[[5,4,8],[5,9,2],[4,5,3]],[[4,9,6],[2,2,5],[4,3,4]],[[4,2,1],[7,6,3],[4,6,5]]])print(Space[[0,0,1],[0,1,2],[0,0,2]])[5 5 4]

在这里插入图片描述

数组的运算

广播

3种

广播机制的原则是如果两个数组的从后数第一个维度轴长度相符或其中一个数组的轴长为 1,则认为它们能够广播

Arr1=np.array([1,2,3])
print(Arr1)  
print(Arr1*3)[1 2 3]
[3 6 9]
Arr2=np.array([[1,2,3],[4,5,6]])  
Arr1=np.array([1,2,3])  
print(Arr1)  
print(Arr2)  
print(Arr1+Arr2)[1 2 3]
**********
[[1 2 3][4 5 6]]
**********
[[2 4 6][5 7 9]]
Arr2=np.array([[1,2,3],[4,5,6]])  
Arr=np.array([[1],[2]])  
print(Arr2)  
print(Arr)  
print(Arr2+Arr)[[1 2 3][4 5 6]]
**********
[[1][2]]
**********
[[2 3 4][6 7 8]]

数值与数组的标量运算,就用到了广播机制,会把数据扩充到跟待运算一样的大小,按位相加/减/乘/除

计算函数

除了可以arr1与arr2直接相运算,如arr1*arr2,也有相应的方法
方法:add() 加法函数,subtract() 减法函数,multiply() 乘法函数,divide() 除法函数,mod() 取余函数。

Score_F=np.array([69,80,90,40,60,20,90,94,90,99])#第一次成绩  
Score_S=np.array([70,92,63,20,50,96,33,44,55,30])#第二次成绩  
Score_chaju=np.subtract(Score_F,Score_S)  
print('求两次成绩的和',np.add(Score_F,Score_S))
print('第一次成绩的0.6加第二次成绩的0.4',np.add(np.multiply(Score_F,0.6),np.multiply(Score_S,0.4)))
print('查看两次成绩的差距,差距以正数显示',np.abs(Score_chaju))

统计函数

axis有两个值,为0求的是纵向的聚合值,为1求的是横向的聚合值,
常用的聚合函数如下:mean,sum,max,min,std,var

标准差是方差的算数平方根(标准差和原数据单位相同,方差多个平方),所以方差>标准差,说明偏差大;方差<标准差,说明偏差小

在这里插入图片描述

在这里插入图片描述

逻辑运算

提供了all、any 和 where 这三个方法
在这里插入图片描述

# 得到两门成绩都及格的同学的成绩
import numpy as np  
Score=np.array([[98,89],[64,90],[60,56],[92,78],[32,45],[48,30]])  
Score60=Score>60  
Score_bool=np.all(Score60,axis=1)  
print(Score_bool)  
print(Score[Score_bool])[ True  True False  True False False]
[[98 89][64 90][92 78]]#查看数学或者语文超过 90 分同学的成绩
Score90=Score>90  
Score_bool=np.any(Score90,axis=1)  
print(Score_bool)  
print(Score[Score_bool])[ True False False  True False False]
[[98 89][92 78]]# 成绩大于60的分数有哪些
import numpy as np
Score_math=np.array([98,64,60,92,32,48])
score60_index = np.where(Score_math>60)
score60 = Score_math[score60_index]
print(score60_index)
print(score60)(array([0, 1, 3]),)
[98 64 92]

矩阵运算

可以用@或dot来实现,它俩是等价的

注意是(3, 2)*(2, 4)=(3, 4) 只有

fruit_price=np.array([[5,4,3]])  # 1*3
jinshu=np.array([[2],[3],[1]])  # 3*1
print('水果的总价格为:\n',fruit_price@jinshu)   #得到的是1*1的矩阵
print('水果的总价格为:\n',np.dot(fruit_price,jinshu))水果的总价格为:[[25]]
水果的总价格为:[[25]]

数组的拆分与合并

合并

水平可以用concatenate 方法、hstack 方法和 column_stack 方法
垂直可以用concatenate 方法、vstack 方法和 row_stack 方法

  • 水平
import numpy as np  
Stock1=np.array([[14.322,14.552],[14.472,14.532],[14.592,15.022],[14.852,14.802]])  
Stock2=np.array([[14.652,14.192],[14.832,14.422],[15.022,14.592],[15.152,14.722]])  
# 方式1
Stock=np.concatenate((Stock1,Stock2),axis=1)  
# 方式2
Stock=np.hstack((Stock1,Stock2)) 
# 方式3
Stock=np.column_stack((Stock1,Stock2)) print(Stock)#上面3种得到的结果一样,写一块了[[14.322 14.552 14.652 14.192][14.472 14.532 14.832 14.422][14.592 15.022 15.022 14.592][14.852 14.802 15.152 14.722]]

在这里插入图片描述

  • 垂直
import numpy as np
Stock1=np.array([[14.322,14.552],[14.472,14.532],[14.592,15.022],[14.852,14.802]])
Stock2=np.array([[14.912,14.932],[14.772,14.602]])
Stock=np.concatenate((Stock1,Stock2),axis=0)
Stock=np.vstack((Stock1,Stock2))
Stock=np.row_stack((Stock1,Stock2))
print(Stock)[[14.322 14.552][14.472 14.532][14.592 15.022][14.852 14.802][14.912 14.932][14.772 14.602]]

在这里插入图片描述

分割

# 水平
import numpy as np
Stock=np.array([[14.322,14.552],[14.472,14.532],[14.592,15.022],[14.852,14.802],[14.912,14.932],[14.772,14.602]])
open,close=np.split(Stock,2,axis=1)
print('open为{},close为{}'.format(open,close))open[[14.322][14.472][14.592][14.852][14.912][14.772]],close为[[14.552][14.532][15.022][14.802][14.932][14.602]]# 垂直
# 这里面对行下标做切分,包含头不包含尾如按[1,3,4]: 0,   1,2,   3,   4,5
import numpy as np
Stock=np.array([[14.322,14.552],[14.472,14.532],[14.592,15.022],[14.852,14.802],[14.912,14.932],[14.772,14.602]])
arr1,arr2,arr3,arr4=np.split(Stock,[1,3,4],axis=0)
print('arr1为{},arr2为{},arr3为{},arr4为{}'.format(arr1,arr2,arr3,arr4))arr1为[[14.322 14.552]],arr2为[[14.472 14.532][14.592 15.022]],arr3为[[14.852 14.802]],arr4为[[14.912 14.932][14.772 14.602]]

综合案例:
https://juejin.cn/book/7240731597035864121/section/7255506664244117559

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/84058.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

当我准备出门时,发现了......我可以用Python实现12306自动买票

前言 不知道大家有没有之前碰到这样的情况&#xff0c;打算去某一个地方当你规划好了时间准备去买票的时候&#xff0c;你想要的那一列往往没有你想要的票了&#xff0c;尤其是国庆七天假和春节半月假&#xff0c;有时候甚至买不到规定计划时间内的票&#xff0c;真的是太烦躁…

列队 Queue 接口概述

在Java中&#xff0c;Queue&#xff08;队列&#xff09;是一种基本的数据结构&#xff0c;用于按照先进先出&#xff08;FIFO&#xff09;的顺序存储元素。Java提供了多种实现Queue接口的类&#xff0c;以下是几种常见的实现方式&#xff1a; LinkedList&#xff1a;LinkedLis…

RISC-V公测平台发布 · 使用YCSB测试SG2042上的MySQL性能

实验介绍&#xff1a; YCSB&#xff08;全称为Yahoo! Cloud Serving Benchmark&#xff09;&#xff0c;该性能测试工具由Java语言编写&#xff08;在之前的MC文章中也提到过这个&#xff0c;如果没看过的读者可以去看看之前MC那一期&#xff09;&#xff0c;主要用于云端或者…

【位操作符的几种题型】

位操作符的几种题型 目录 题型一&#xff1a;寻找“单身狗”。 题型二&#xff1a;计算一个数在二进制中1的个数 题型三&#xff1a;不允许创建临时变量&#xff0c;交换两个整数的内容 题型一&#xff1a;寻找“单身狗”。 1.1题目解析 在一个整型数组中&#xff0c;只有…

SUB-1G SOC芯片DP4306F 32 位 ARM Cortex-M0+内核替代CMT2380F32

DP4306F是一款高性能低功耗的单片集成收发机&#xff0c;集成MO核MCU&#xff0c;工作频率可覆盖200MHiz^ 1000MHz。 支持230/408/433/470/868/915频段。该芯片集成了射频接收器、射频发射器、频率综合器、GFSK调制器、GFSK解调器等功能模块。通过SPI接口可以对输出功率、频道选…

element-plus的日期选择器限定选择范围

目录 前言一、最近30天总结 前言 提示&#xff1a;这里可以添加本文要记录的大概内容&#xff1a; element-plus的日期选择器限定选择范围&#xff0c;由于数据的获取范围限定&#xff0c;需要前端处理一下日期的选择范围 提示&#xff1a;以下是本篇文章正文内容&#xff0c…

软考高级之系统架构师之数据通信与计算机网络

概念 OSPF 在划分区域之后&#xff0c;OSPF网络中的非主干区域中的路由器对于到外部网络的路由&#xff0c;一定要通过ABR(区域边界路由器)来转发&#xff0c;既然如此&#xff0c;对于区域内的路由器来说&#xff0c;就没有必要知道通往外部网络的详细路由&#xff0c;只要由…

【计算机网络】概述及数据链路层

每一层只依赖于下一层所提供的服务&#xff0c;使得各层之间相互独立、灵活性好&#xff0c;已于实现和维护&#xff0c;并能促进标准化工作。 应用层&#xff1a;通过应用进程间的交互完成特定的网络应用&#xff0c;HTTP、FTP、DNS&#xff0c;应用层交互的数据单元被称为报…

音频光耦合器

音频光耦合器是一种能够将电信号转换为光信号并进行传输的设备。它通常由发光二极管&#xff08;LED&#xff09;和光敏电阻&#xff08;光电二极管或光敏电阻器&#xff09;组成。 在音频光耦合器中&#xff0c;音频信号经过放大和调节后&#xff0c;被转换为电流信号&#xf…

【密码学】六、公钥密码

公钥密码 1、概述1.1设计要求1.2单向函数和单向陷门函数 2、RSA公钥密码体制2.1加解密2.2安全性分析 3、ElGamal公钥密码体制3.1加解密算法3.2安全性分析 4、椭圆曲线4.1椭圆曲线上的运算4.2ECC 5、SM2公钥密码体制5.1参数选取5.2密钥派生函数5.3加解密过程5.3.1初始化5.3.2加密…

ThinkPHP6企业OA办公系统

有需要请加文章底部Q哦 可远程调试 ThinkPHP6企业OA办公系统 一 介绍 勾股OA基于ThinkPHP6开发&#xff0c;前端Layui&#xff0c;数据库mysql&#xff0c;是一款实用的企业办公系统。可多角色登录&#xff0c;集成了系统设置、人事管理、消息管理、审批管理、日常办公、客户…

pytest 用例运行方式

一、命令行方式运行 执行某个目录下所有的用例&#xff0c;符合规范的所有用例 进入到对应的目录,直接执行pytest; 例如需要执行testcases 下的所有用例; 可以进入testcases 目录; 然后执行pytest 进入对应目录的上级目录,执行pytest 目录名称/ ; ; 例如需要执行testcases 下…

【Android】在Windows11系统上运行VisualStudioEmulator forAndroid

这是一个x86架构处理器的安卓模拟器&#xff0c; 在Visual Studio开发工具上用的&#xff0c;也是运行在Hyper-V虚拟机上的&#xff0c;相比其它的模拟器的性能好&#xff0c;占用磁盘空间小&#xff0c;操作简洁方便&#xff0c;非常适合开发人员调试安卓手机模拟。 安装 首…

K8S系列文章之 Traefik快速入门

traefik 与 nginx 一样&#xff0c;是一款优秀的反向代理工具&#xff0c;或者叫 Edge Router。至于使用它的原因则基于以下几点 无须重启即可更新配置自动的服务发现与负载均衡与 docker 的完美集成&#xff0c;基于 container label 的配置漂亮的 dashboard 界面metrics 的支…

要实现智能制造到底有多难?先看看这一步...

是新朋友吗&#xff1f;记得先点上方蓝字关注Ruff 智能制造、数字化转型&#xff0c;已成为当下制造业最炙手可热的话题&#xff0c;政府工作报告中已多次提到&#xff0c;为了促进数字经济发展&#xff0c;加强数字中国建设整体布局&#xff0c;打造智能工厂、智慧工厂。愿景是…

论文阅读---《Unsupervised Transformer-Based Anomaly Detection in ECG Signals》

题目&#xff1a;基于Transformer的无监督心电图&#xff08;ECG&#xff09;信号异常检测 摘要 异常检测是数据处理中的一个基本问题&#xff0c;它涉及到医疗感知数据中的不同问题。技术的进步使得收集大规模和高度变异的时间序列数据变得更加容易&#xff0c;然而&#xff…

SEO搜索引擎优化

目录 场景 内部业务To B (Business-to-Business&#xff0c;B2B)需要降低SEO&#xff0c;反爬 客户业务To C (Business-to-Consumer&#xff0c;B2C)需要提高SEO TDK优化 Title&#xff08;标题&#xff09; Description&#xff08;描述&#xff09; Keywords&#xff…

matplotlib 笔记 plt.grid

用于添加网格线 主要参数 visible 布尔值&#xff0c;True表示画网格 which表示要显示的刻度线类型&#xff0c;可以是 major&#xff08;主刻度&#xff09;或 minor&#xff08;次刻度&#xff09;&#xff0c;或者同时显示&#xff08;both&#xff09;alpha 透明度 …

Effective Java笔记(27)消除非受检的警告

用泛型编程时会遇到讲多编译器警告 &#xff1a; 非受检转换警告&#xff08; unchecked cast warning &#xff09;、非受检方法调用警告、非受检参数化可变参数类型警告&#xff08; unchecked parameterized vararg type warning&#xff09;&#xff0c;以及非受检转换警告…

【Pyhthon实战】Python对全校电费查询采集并可视化分析

前言 今天,我来说说怎么抓取宿舍电费的过程。我们学校是在完美校园交电费的,我们可以不用取抓包完美校园的数据接口,我们可以直接登录学校的一卡通网站,每个学校都有,大家可以自己找找,这里我为什么要抓包呢,因为学校提供的网站已经打不开了,这里就不介绍怎么抓包了。 …