【数理知识】求刚体旋转矩阵和平移矩阵,已知 N>=3 个点在前后时刻的坐标,且这 N>=3 点间距离始终不变代表一个刚体

序号内容
1【数理知识】自由度 degree of freedom 及自由度的计算方法
2【数理知识】刚体 rigid body 及刚体的运动
3【数理知识】刚体基本运动,平动,转动
4【数理知识】向量数乘,内积,外积,matlab代码实现
5【数理知识】协方差,随机变量的的协方差,随机变量分别是单个数字和向量时的协方差
6【数理知识】旋转矩阵的推导过程,基于向量的旋转来实现,同时解决欧式变换的非线性局限
7【数理知识】已知 N>=3 个点在前后时刻的坐标,求刚体平移矩阵,旋转矩阵,且这 N>=3 点间距离始终不变代表一个刚体

文章目录

  • 1 解决流程
    • 1. 找寻质心(Centroid)
    • 2. 奇异值分解(SVD)
    • 3. 通过协方差矩阵得到旋转矩阵
    • 4. 计算平移矩阵
  • 2 举例验证 1
    • 1. 找寻质心(Centroid)
    • 2. 计算协方差矩阵
    • 3. 奇异值分解
    • 4. 计算平移矩阵
  • Ref

存在有 N ≥ 3 N\ge 3 N3 个点,它们两两之间距离始终不变,这就满足了可代表一个刚体的条件。同时,已知这 N ≥ 3 N\ge 3 N3 个点在前后时刻的坐标,如何求对应刚体的平移矩阵,旋转矩阵?

如下图所示,对应点的颜色相同, R R R 是旋转, t t t 是平移。我们希望找到能将数据集 A A A 中的点对齐到数据集 B B B 的最佳旋转和平移。这种变换有时被称为欧几里得变换(Euclidean)或刚性变换(Rigid transform),因为它保留了形状和大小。这与仿射变换不同,后者包括缩放和剪切。

这个问题尤其出现在三维点云数据注册等任务中,因为这些数据是从三维激光扫描仪或流行的 Kinect 设备等硬件中获取的。

在这里插入图片描述

接下来的描述中,我们为了和图中情况保持一致,我们都假设 N = 3 N = 3 N=3

1 解决流程

旋转和平移的方程式可以表示为如下形式:

R A + t = B \begin{aligned} RA + t = B \end{aligned} RA+t=B

最终目的是求取最合适的 R R R t t t

至于为什么可以这么表示,请参考文章开头所提及到的其他文章。

1. 找寻质心(Centroid)

这一步也比较简单,质心就是 N = 3 N = 3 N=3 个数据点的平均值

Centroid A = 1 3 ∑ k = 1 3 A k Centroid B = 1 3 ∑ k = 1 3 B k \begin{aligned} \text{Centroid}_{A} &= \frac{1}{3} \sum_{k=1}^{3} A_k \\ \text{Centroid}_{B} &= \frac{1}{3} \sum_{k=1}^{3} B_k \end{aligned} CentroidACentroidB=31k=13Ak=31k=13Bk

其中 A k A_k Ak B k B_k Bk 分别表示在数据集 A A A B B B 中第 k k k 个数据点的坐标。


2. 奇异值分解(SVD)

有几种方法可以找到点之间的最佳旋转。最简单的方法是使用奇异值分解(SVD),因为许多编程语言(Matlab、Octave、使用 LAPACK 的 C 语言、使用 OpenCV 的 C++ 语言…)都可以使用这个函数。SVD 就像线性代数中的一根神奇魔杖,可以解决各种数值问题。这里不会详细介绍它的工作原理,而会介绍如何使用它。你只需要知道,SVD 可以将一个矩阵(称作 E E E)分解/因式分解为另外 3 个矩阵,即

[ U , S , V ] = SVD ( E ) E = U S V T \begin{aligned} [U, S, V] &= \text{SVD} (E) \\ E &= U S V^\text{T} \end{aligned} [U,S,V]E=SVD(E)=USVT

如果 E E E 是方阵,那么 U 、 S U、S US V V V 的大小也相同。

3. 通过协方差矩阵得到旋转矩阵

要找到最佳旋转方式,我们首先要重新调整两个数据集的中心,使两个中心点都位于原点,如下图所示。

在这里插入图片描述

这样就去除了平移部分,只剩下旋转部分需要处理。下一步是累加一个矩阵(称为 H H H),然后使用 SVD 求出旋转,如下所示:

H = ( A − Centroid A ) ( B − Centroid B ) T [ U , S , V ] = SVD ( H ) R = V U T \begin{aligned} H &= (A - \text{Centroid}_{A})(B - \text{Centroid}_{B})^\text{T} \\ [U, S, V] &= \text{SVD} (H) \\ R &= V U^\text{T} \end{aligned} H[U,S,V]R=(ACentroidA)(BCentroidB)T=SVD(H)=VUT

其中, H H H 是我们熟悉的协方差矩阵。 A − Centroid A A - \text{Centroid}_{A} ACentroidA 是用 A A A 减去 Centroid A \text{Centroid}_{A} CentroidA 中的每一列的操作。

需要注意的一点是,要正确计算 H H H。它最终应该是一个 3 × 3 3 \times 3 3×3 矩阵,而不是一个 N × N N \times N N×N 矩阵(这里 N N N 是指点的数量,而 3 3 3 是指数据的坐标 [ x , y , z ] [x,y,z] [x,y,z] 维度是 3 3 3)。注意转置符号。它是在两个矩阵之间进行乘法运算,这两个矩阵的实际维数分别是 3 × N 3 \times N 3×N N × 3 N \times 3 N×3。乘法的顺序也很重要,如果换一种方法,就会变成是从 B B B A A A 的旋转。

4. 计算平移矩阵

得到旋转矩阵 R R R 后,平移矩阵 t t t 也就变得简单了。把质心代入开篇咱们提到的方程,那么有

R A + t = B R × Centroid A + t = Centroid B t = Centroid B − R × Centroid A \begin{aligned} RA + t &= B \\ R \times \text{Centroid}_A + t &= \text{Centroid}_B \\ t &= \text{Centroid}_B - R \times \text{Centroid}_A \end{aligned} RA+tR×CentroidA+tt=B=CentroidB=CentroidBR×CentroidA


2 举例验证 1

假设有 3 3 3 个相对位置保持不变的点,已知它们在数据集合 A A A 和数据集合 B B B 中的位置,然后计算旋转矩阵 R R R 和平动矩阵 t t t

在数据集合 A A A 中:
1 1 1 的位置为: A 1 = ( 1 , 2 , 3 ) A_1 = (1, 2, 3) A1=(1,2,3)
2 2 2 的位置为: A 2 = ( 4 , 5 , 6 ) A_2 = (4, 5, 6) A2=(4,5,6)
3 3 3 的位置为: A 3 = ( 7 , 8 , 9 ) A_3 = (7, 8, 9) A3=(7,8,9)

在数据集合 B B B 中:
1 1 1 的位置为: B 1 = ( 2 , 3 , 4 ) B_1 = (2, 3, 4) B1=(2,3,4)
2 2 2 的位置为: B 2 = ( 5 , 6 , 7 ) B_2 = (5, 6, 7) B2=(5,6,7)
3 3 3 的位置为: B 3 = ( 8 , 9 , 10 ) B_3 = (8, 9, 10) B3=(8,9,10)

计算思路为:

  • 先计算平移:通过求取这些点在两个时刻的质心位置,然后求差来得到平移矩阵

1. 找寻质心(Centroid)

这一步也比较简单,直接代入样本数据

Centroid A = ( 1 + 4 + 7 , 2 + 5 + 8 , 3 + 6 + 9 ) 3 = ( 1 + 4 + 7 3 , 2 + 5 + 8 3 , 3 + 6 + 9 3 ) = ( 4 , 5 , 6 ) Centroid B = ( 2 + 5 + 8 , 3 + 6 + 9 , 4 + 7 + 10 ) 3 = ( 2 + 5 + 8 3 , 3 + 6 + 9 3 , 4 + 7 + 10 3 ) = ( 5 , 6 , 7 ) \begin{aligned} \text{Centroid}_{A} &= \frac{(1+4+7, 2+5+8, 3+6+9)}{3} = (\frac{1 + 4 + 7}{3}, \frac{2 + 5 + 8}{3}, \frac{3 + 6 + 9}{3}) = (4, 5, 6) \\ \text{Centroid}_{B} &= \frac{(2+5+8, 3+6+9, 4+7+10)}{3} = (\frac{2 + 5 + 8}{3}, \frac{3 + 6 + 9}{3}, \frac{4 + 7 + 10}{3}) = (5, 6, 7) \end{aligned} CentroidACentroidB=3(1+4+7,2+5+8,3+6+9)=(31+4+7,32+5+8,33+6+9)=(4,5,6)=3(2+5+8,3+6+9,4+7+10)=(32+5+8,33+6+9,34+7+10)=(5,6,7)

2. 计算协方差矩阵

根据公式

Cov ( X , Y ) i j = ∑ k n = 3 ( x k i − x ˉ i ) ( y k j − y ˉ i ) n − 1 \begin{aligned} \text{Cov} (X,Y)_{ij} &= \frac{\sum_k^{n=3} (x_{ki} - \bar{x}_i)(y_{kj} - \bar{y}_i)}{n-1} \end{aligned} Cov(X,Y)ij=n1kn=3(xkixˉi)(ykjyˉi)

可以得到协方差矩阵

Cov ( X , Y ) = [ 3 3 3 3 3 3 3 3 3 ] \begin{aligned} \text{Cov} (X,Y) &= \left[\begin{matrix} 3 & 3 & 3 \\ 3 & 3 & 3 \\ 3 & 3 & 3 \\ \end{matrix}\right] \end{aligned} Cov(X,Y)= 333333333

关于协方差矩阵的原理和求解方法,可参考文章:【数理知识】协方差,随机变量的的协方差,随机变量分别是单个数字和向量时的协方差。

3. 奇异值分解

可以直接使用 Matlab 进行奇异值分解,可以得到

U = [ − 0.5774 0.8165 − 0.0000 − 0.5774 − 0.4082 − 0.7071 − 0.5774 − 0.4082 0.7071 ] , S = [ 9 0 0 0 0 0 0 0 0 ] , V = [ − 0.5774 0.8165 0 − 0.5774 − 0.4082 − 0.7071 − 0.5774 − 0.4082 0.7071 ] U = \left[\begin{matrix} -0.5774 & 0.8165 & -0.0000 \\ -0.5774 & -0.4082 & -0.7071 \\ -0.5774 & -0.4082 & 0.7071 \\ \end{matrix}\right], S = \left[\begin{matrix} 9 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ \end{matrix}\right], V = \left[\begin{matrix} -0.5774 & 0.8165 & 0 \\ -0.5774 & -0.4082 & -0.7071 \\ -0.5774 & -0.4082 & 0.7071 \\ \end{matrix}\right] U= 0.57740.57740.57740.81650.40820.40820.00000.70710.7071 ,S= 900000000 ,V= 0.57740.57740.57740.81650.40820.408200.70710.7071

R = V U T = [ 1 0 0 0 1 0 0 0 1 ] R = V U^\text{T} = \left[\begin{matrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ \end{matrix}\right] R=VUT= 100010001

至此得到了旋转矩阵。

4. 计算平移矩阵

t = Centroid B − R × Centroid A = ( 1 , 1 , 1 ) \begin{aligned} t &= \text{Centroid}_B - R \times \text{Centroid}_A &= (1, 1, 1) \end{aligned} t=CentroidBR×CentroidA=(1,1,1)


Ref

  1. FINDING OPTIMAL ROTATION AND TRANSLATION BETWEEN CORRESPONDING 3D POINTS
  2. 从3组对应点中求得最佳的旋转和平移变换

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/84184.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【Spring Boot】Thymeleaf模板引擎 — Thymeleaf的高级用法

Thymeleaf的高级用法 主要介绍Thymeleaf的内联、内置对象、内置变量等高级用法。 1.内联 虽然通过Thymeleaf中的标签属性已经几乎满足了开发中的所有需求,但是有些情况下需要在CSS或JS中访问后台返回的数据。所以Thymeleaf提供了th:inline"text/javascript/…

spring boot策略模式实用: 告警模块为例

spring boot策略模式实用: 告警模块 0 涉及知识点 策略模式, 模板方法, 代理, 多态, 反射 1 需求概括 场景: 每隔一段时间, 会获取设备运行数据, 如通过温湿度计获取到当前环境温湿度;需求: 对获取回来的进行分析, 超过配置的阈值需要产生对应的告警 2 方案设计 告警的类…

vuejs 设计与实现 - 双端diff算法

我们介绍了简单 Diff 算法的实现原理。简单 Diff 算法利用虚拟节点的 key 属性,尽可能地复用 DOM元素,并通过移动 DOM的方式来完成更新,从而减少不断地创建和销毁 DOM 元素带来的性能开销。但是,简单 Diff 算法仍然存在很多缺陷&a…

数据结构——双向链表

双向链表实质上是在单向链表的基础上加上了一个指针指向后面地址 单向链表请参考http://t.csdn.cn/3Gxk9 物理结构 首先我们看一下两种链表的物理结构 我们可以看到:双向在单向基础上加入了一个指向上一个地址的指针,如此操作我们便可以向数组一样操作…

【TypeScript】中关于 { 声明合并 } 的使用及注意事项

概念: 在TS中,如果定义了多个相同命名的函数,接口或者class 类,那么它们会自动合并成一个类型 函数的合并: 前面章节讲解的函数重载就是使用了定义多个函数的类型进行合并: function reverse(x: number):…

树状结构数据,筛选指定数据

问题描述: 应用场景和需求:对一个树状结构的数据,进行CRUD 时,想筛选出 树状结构数据中存在变动的部分。 操作步骤 准备需要的数据: 1.先拿到 你原来的树状结构数据 2.再筛选出 需要保留的数据集合id,也…

【《深入浅出计算机网络》学习笔记】第1章 概述

内容来自b站湖科大教书匠《深入浅出计算机网络》视频和《深入浅出计算机网络》书籍 目录 1.1 信息时代的计算机网络 1.1.1 计算机网络的各类应用 1.1.2 计算机网络带来的负面问题 1.2 因特网概述 1.2.1 网络、互联网与因特网的区别与关系 1.2.1.1 网络 1.2.1.2 互联网 …

Microsoft Message Queuing Denial-of-Service Vulnerability

近期官方公布了一个MSMQ的拒绝服务漏洞,可能因为网络安全设备的更新,影响业务,值得大家关注。 漏洞具体描述参见如下: Name: Microsoft Message Queuing Denial-of-Service Vulnerability Description: Microsoft Message Queuing…

Jenkins持续集成-快速上手

Jenkins持续集成-快速上手 注:Jenkins一般不单独使用,而是需要依赖代码仓库,构建工具等。 搭配组合:GitGitee(GitHub、GitLab)MavenJenkins 前置准备 常见安装方式: war包Docker容器实例&…

W5100S-EVB-PICO 做TCP Server进行回环测试(六)

前言 上一章我们用W5100S-EVB-PICO开发板做TCP 客户端连接服务器进行数据回环测试,那么本章将用开发板做TCP服务器来进行数据回环测试。 TCP是什么?什么是TCP Server?能干什么? TCP (Transmission Control Protocol) 是一种面向连…

从Spring源码看创建对象的过程

从Spring源码看创建对象的过程 Spring对于程序员set注入的属性叫做属性的填充、对于set注入之后的处理(包括BeanPostProcessor的处理、初始化方法的处理)叫做初始化。 研读AbstractBeanFactory类中的doGetBean()方法 doGetBean()方法首先完成的工作是…

【Linux操作系统】makefile入门:一个规则-两个函数-三个变量

在Linux中,makefile是一种非常重要的工具,用于自动化构建和管理项目。它可以帮助开发人员轻松地编译和链接程序,同时还可以处理依赖关系和增量构建等问题。在makefile中,我们将重点介绍makefile中的一个规则,两个函数和…

湘大 XTU OJ 1214 A+B IV 题解:数位移动的本质+布尔变量标记+朴素模拟

一、链接 AB IV 二、题目 题目描述 小明喜欢做ab的算术,但是他经常忘记把末位对齐,再进行加,所以,经常会算错。 比如1213,他把12左移了1位,结果变成了133。 小明已经算了一些等式,请计算一下…

harbor搭建

回到目录 Harbor 是 VMware 公司开源的企业级 Docker Registry 项目,其目标是帮助用户迅速搭建一个企业级的 Docker Registry 服务 通俗的讲,harbor是一个私人镜像存储服务器 1 下载安装 进入官网,下载一个离线安装包,harbor官网下载 这…

Vc - Qt - QToolButton

QToolButton 是 Qt 框架中的一个类,是 QPushButton 的子类。它可以显示一个可单击的按钮,并且可以与弹出菜单、图标和文本等进行关联。 QToolButton的一些常见特性和用法包括: 设置文本:使用 setText() 函数设置按钮上的文本。设置…

AES加密(1):AES基础知识和计算过程

从产品代码的安全角度考虑,我们需要对代码、数据进行加密。加密的算法有很多种,基于速度考虑,我们一般使用对称加密算法,其中有一种常见的对称加密算法:AES(Advanced Encryption Standard)。在一些高端的MCU&#xff0…

[虚幻引擎] UE DTBase64 插件说明 使用蓝图对字符串或文件进行Base64加密解密

本插件可以在虚幻引擎中使用蓝图对字符串,字节数组,文件进行Base64的加密和解密。 目录 1. 节点说明 String To Base64 Base64 To String Binary To Base64 Base64 To Binary File To Base64 Base64 To File 2. 案例演示 3. 插件下载 1. 节点说…

普罗米修斯之一实现图形化监控

普罗米修斯之一实现图形化监控 1:prometheus1. 下载:2. 安装:3. 启动:1:启动方式之一加入systemctl2:启动方式之二---直接启动3:启动方式之三----后台运行 4:默认配置文件prometheus…

Idea使用Docker插件实现maven打包自动构建镜像

Docker 开启TCP 服务 vi /lib/systemd/system/docker.service改写以下内容 ExecStart/usr/bin/dockerd -H tcp://0.0.0.0:2375 -H unix:///var/run/docker.sock重启服务 #重新加载配置文件 systemctl daemon-reload #重启服务 systemctl restart docker.service此时docker已…

考研408 | 【计算机网络】物理层

导图: 一、通信基础 基本概念: 物理层接口特性:物理层解决如何在连接各种计算机的传输媒体上传输数据比特流,而不是指具体的传输媒体。 物理层主要任务:确定与传输媒体接口有关的一些特性 典型的数据通信模型 数据通…