vuejs 设计与实现 - 双端diff算法

我们介绍了简单 Diff 算法的实现原理。简单 Diff 算法利用虚拟节点的 key 属性,尽可能地复用 DOM元素,并通过移动 DOM的方式来完成更新,从而减少不断地创建和销毁 DOM 元素带来的性能开销。但是,简单 Diff 算法仍然存在很多缺陷,这些缺陷可以通过本章将要介绍的双端 Diff 算法解决。

1.双端比较的原理

双端 Diff 算法是一种同时对新旧两组子节点的两个端点进行比较的算法。因此,我们需要四个索引值,分别指向新旧两组子节点的端点.如下图:

请添加图片描述

双端比较的方式:

请添加图片描述
在双端比较中,每一轮比较都分为四个步骤,如图 10-5 中的连线所示。
比较的过程如下描述:
第一步: 比较旧的一组子节点中的第一个子节点 p-1 与新的一组子节点中的第一个子节点 p-4,看看它们是否相同。由于两者的key 值不同,因此不相同,不可复用,于是什么都不做。

第二步:比较旧的一组子节点中的最后一个子节点 p-4 与新的一组子节点中的最后一个子节点 p-3,看看它们是否相同。由于两者的 key 值不同,因此不相同,不可复用,于是什么都不做。

第三步:比较旧的一组子节点中的第一个子节点 p-1 与新的一组子节点中的最后一个子节点 p-3,看看它们是否相同。由于两者的 key 值不同,因此不相同,不可复用,于是什么都不做。

第四步:比较旧的一组子节点中的最后一个子节点 p-4 与新的一组子节点中的第一个子节点 p-4。由于它们的 key 值相同,因此可以进行 DOM 复用。
请添加图片描述

 function patchChildren(n1, n2, container) {patchKeyedChildren(n1, n2, container)
}function patchKeyedChildren(n1, n2, container){const oldChildren = n1.children const newChildren = n2.children// 四个索引值let oldStartIdx = 0let oldEndIdx = oldChildren.length - 1let newStartIdx = 0let newEndIdx = newChildren.length - 1// 四个索引指向的 vnode 节点let oldStartVNode = oldChildren[oldStartIdx]let oldEndVNode = oldChildren[oldEndIdx]let newStartVNode = newChildren[newStartIdx]let newEndVNode = newChildren[newEndIdx]if (oldStartVNode.key === newStartVNode.key) {// 步骤一:oldStartVNode 和 newStartVNode 比较} else if (oldEndVNode.key === newEndVNode.key) {// 步骤二:oldEndVNode 和 newEndVNode 比较} else if(oldStartVNode.key === newEndVNode.key) {// 步骤三:oldStartVNode 和 newEndVNode 比较} else if (oldEndVNode.key === newStartVNode.key) {// 我们找到了具有相同 key 值的节点。这说明,原来处于尾部的节点在新的顺序中应该处于头部。// 于是,我们只需要以头部元素oldStartVNode.el 作为锚点,将尾部元素 oldEndVNode.el 移动到锚点前面即可。// 但需要注意的是,在进行 DOM 的移动操作之前,仍然需要调用 patch 函数在新旧虚拟节点之间打补丁。// 第四步:oldEndVNode 和 newStartVNode 比较// 仍然需要调用 patch 函数进行打补丁patch(oldEndVNode, newStartVNode, container)// 移动dom操作  oldEndVNode.el 移动到 oldStartVNode.el 前面insert(oldEndVNode.el, container, oldStartVNode.el)// 移动 DOM 完成后,更新索引值,指向下一个位置oldEndVNode = oldChildren[--oldEndIdx]newStartVNode = newChildren[++newStartIdx]}}

第一轮 DOM 移动操作完成 态状的点节后,新旧两组子节点以及真实 DOM 节点的状态如下:
请添加图片描述

此时,真实 DOM 节点顺序为 p-4、p-1、p-2、p-3,这与新的 一组子节点顺序不一致。这是因为diff算法还没结束,还需要进行下一轮更新。因此,我们需要将更新逻辑封装到一个 while 循环中,

function patchChildren(n1, n2, container) {patchKeyedChildren(n1, n2, container)}function patchKeyedChildren(n1, n2, container){const oldChildren = n1.children const newChildren = n2.children// 四个索引值let oldStartIdx = 0let oldEndIdx = oldChildren.length - 1let newStartIdx = 0let newEndIdx = newChildren.length - 1// 四个索引指向的 vnode 节点let oldStartVNode = oldChildren[oldStartIdx]let oldEndVNode = oldChildren[oldEndIdx]let newStartVNode = newChildren[newStartIdx]let newEndVNode = newChildren[newEndIdx]+           while (oldStartIdx <= oldEndIdx && newStartIdx <= newEndIdx) {if (oldStartVNode.key === newStartVNode.key) {// 步骤一:oldStartVNode 和 newStartVNode 比较} else if (oldEndVNode.key === newEndVNode.key) {// 步骤二:oldEndVNode 和 newEndVNode 比较} else if(oldStartVNode.key === newEndVNode.key) {// 步骤三:oldStartVNode 和 newEndVNode 比较} else if (oldEndVNode.key === newStartVNode.key) {// 我们找到了具有相同 key 值的节点。这说明,原来处于尾部的节点在新的顺序中应该处于头部。// 于是,我们只需要以头部元素oldStartVNode.el 作为锚点,将尾部元素 oldEndVNode.el 移动到锚点前面即可。// 但需要注意的是,在进行 DOM 的移动操作之前,仍然需要调用 patch 函数在新旧虚拟节点之间打补丁。// 第四步:oldEndVNode 和 newStartVNode 比较// 仍然需要调用 patch 函数进行打补丁patch(oldEndVNode, newStartVNode, container)// 移动dom操作  oldEndVNode.el 移动到 oldStartVNode.el 前面insert(oldEndVNode.el, container, oldStartVNode.el)// 移动 DOM 完成后,更新索引值,指向下一个位置oldEndVNode = oldChildren[--oldEndIdx]newStartVNode = newChildren[++newStartIdx]}+           }}

由于在每一轮更新完成之后,紧接着都会更新四个索引中与当前更新轮次相关联的索引,所以整个 while 循环执行的条件是:头部索引值要小于等于尾部索引值。

在第一轮更新结束后循环条件仍然成立,因此需要进行下一轮的比较:

第一步:比较旧的一组子节点中的头部节点 p-1 与新的一组子节点中的头部节点 p-2,看看它们是否相同。由于两者的 key 值不
同,不可复用,所以什么都不做。

这里,我们使用了新的名词: 。它指的是头部索引oldStartIdx 和 newStartIdx 所指向的节点。

第二步:比较旧的一组子节点中的尾部节点 p-3 与新的一组子节点中的尾部节点 p-3,两者的 key 值相同,可以复用。另外,由于两者都处于尾部,因此不需要对真实 DOM 进行移动操作,只需要打补丁即可:


function patchChildren(n1, n2, container) {patchKeyedChildren(n1, n2, container)}function patchKeyedChildren(n1, n2, container){const oldChildren = n1.children const newChildren = n2.children// 四个索引值let oldStartIdx = 0let oldEndIdx = oldChildren.length - 1let newStartIdx = 0let newEndIdx = newChildren.length - 1// 四个索引指向的 vnode 节点let oldStartVNode = oldChildren[oldStartIdx]let oldEndVNode = oldChildren[oldEndIdx]let newStartVNode = newChildren[newStartIdx]let newEndVNode = newChildren[newEndIdx]while (oldStartIdx <= oldEndIdx && newStartIdx <= newEndIdx) {if (oldStartVNode.key === newStartVNode.key) {// 步骤一:oldStartVNode 和 newStartVNode 比较} else if (oldEndVNode.key === newEndVNode.key) {// 步骤二:oldEndVNode 和 newEndVNode 比较// 节点在新的顺序中仍然处于尾部,不需要移动,但仍需打补丁+              patch(oldEndVNode, newEndVNode, container)// 更新索引和头尾部节点变量+             oldEndVNode = oldChildren[--oldEndIdx]+             newEndVNode = newChildren[--newEndIdx]} else if(oldStartVNode.key === newEndVNode.key) {// 步骤三:oldStartVNode 和 newEndVNode 比较} else if (oldEndVNode.key === newStartVNode.key) {// 我们找到了具有相同 key 值的节点。这说明,原来处于尾部的节点在新的顺序中应该处于头部。// 于是,我们只需要以头部元素oldStartVNode.el 作为锚点,将尾部元素 oldEndVNode.el 移动到锚点前面即可。// 但需要注意的是,在进行 DOM 的移动操作之前,仍然需要调用 patch 函数在新旧虚拟节点之间打补丁。// 第四步:oldEndVNode 和 newStartVNode 比较// 仍然需要调用 patch 函数进行打补丁patch(oldEndVNode, newStartVNode, container)// 移动dom操作  oldEndVNode.el 移动到 oldStartVNode.el 前面insert(oldEndVNode.el, container, oldStartVNode.el)// 移动 DOM 完成后,更新索引值,指向下一个位置oldEndVNode = oldChildren[--oldEndIdx]newStartVNode = newChildren[++newStartIdx]}}}

请添加图片描述
真实 DOM 的顺序相比上一轮没有变化,因为在这一轮的比较中没有对 DOM 节点进行移动,只是对 p-3 节点打补丁。接下来,我们再根据图 上图所示的状态执行下一轮的比较:

第一步:比较旧的一组子节点中的头部节点 p-1 与新的一组子节点中的头部节点 p-2,看看它们是否相同。由于两者的 key 值不
同,不可复用,因此什么都不做。

第二步:比较旧的一组子节点中的尾部节点 p-2 与新的一组子节点中的尾部节点 p-1,看看它们是否相同,由于两者的 key 值不
同,不可复用,因此什么都不做。

第三步:比较旧的一组子节点中的头部节点 p-1 与新的一组子节点中的尾部节点 p-1。两者的 key 值相同,可以复用。

在第三步的比较中,我们找到了相同的节点,这说明: p-1原本是头部节点,但是在新的顺序中,它变成了尾部节点。因此,我们需要将节点p-1对应的真实 DOM 移动到旧的一组子节点的尾部节点 p-2 所对应的真实 DOM 后面,同时还需要更新相应的索引到下一个位置,如图 下图所示:
请添加图片描述

function patchChildren(n1, n2, container) {patchKeyedChildren(n1, n2, container)}function patchKeyedChildren(n1, n2, container){const oldChildren = n1.children const newChildren = n2.children// 四个索引值let oldStartIdx = 0let oldEndIdx = oldChildren.length - 1let newStartIdx = 0let newEndIdx = newChildren.length - 1// 四个索引指向的 vnode 节点let oldStartVNode = oldChildren[oldStartIdx]let oldEndVNode = oldChildren[oldEndIdx]let newStartVNode = newChildren[newStartIdx]let newEndVNode = newChildren[newEndIdx]while (oldStartIdx <= oldEndIdx && newStartIdx <= newEndIdx) {if (oldStartVNode.key === newStartVNode.key) {// 步骤一:oldStartVNode 和 newStartVNode 比较// 调用 patch 函数在 oldStartVNode 与 newStartVNode 之间打补丁} else if (oldEndVNode.key === newEndVNode.key) {// 步骤二:oldEndVNode 和 newEndVNode 比较// 节点在新的顺序中仍然处于尾部,不需要移动,但仍需打补丁patch(oldEndVNode, newEndVNode, container)// 更新索引和头尾部节点变量oldEndVNode = oldChildren[--oldEndIdx]newEndVNode = newChildren[--newEndIdx]} else if(oldStartVNode.key === newEndVNode.key) {// 步骤三:oldStartVNode 和 newEndVNode 比较+             patch(oldStartVNode, newEndVNode, container)+             insert(oldStartVNode.el, container, oldEndVNode.el.nextSibling)+             oldStartVNode = oldChildren[++oldStartIdx]+             newEndVNode = newChildren[--newEndIdx]} else if (oldEndVNode.key === newStartVNode.key) {// 我们找到了具有相同 key 值的节点。这说明,原来处于尾部的节点在新的顺序中应该处于头部。// 于是,我们只需要以头部元素oldStartVNode.el 作为锚点,将尾部元素 oldEndVNode.el 移动到锚点前面即可。// 但需要注意的是,在进行 DOM 的移动操作之前,仍然需要调用 patch 函数在新旧虚拟节点之间打补丁。// 第四步:oldEndVNode 和 newStartVNode 比较// 仍然需要调用 patch 函数进行打补丁patch(oldEndVNode, newStartVNode, container)// 移动dom操作  oldEndVNode.el 移动到 oldStartVNode.el 前面insert(oldEndVNode.el, container, oldStartVNode.el)// 移动 DOM 完成后,更新索引值,指向下一个位置oldEndVNode = oldChildren[--oldEndIdx]newStartVNode = newChildren[++newStartIdx]}}}

下一轮循环:
第一步:比较旧的一组子节点中的头部节点 p-2 与新的一组 子节点中的头部节点 p-2。发现两者 key 值相同,可以复用。但 两者在新旧两组子节点中都是头部节点,因此不需要移动,只需 要调用 patch 函数进行打补丁即可。

function patchChildren(n1, n2, container) {patchKeyedChildren(n1, n2, container)}function patchKeyedChildren(n1, n2, container){const oldChildren = n1.children const newChildren = n2.children// 四个索引值let oldStartIdx = 0let oldEndIdx = oldChildren.length - 1let newStartIdx = 0let newEndIdx = newChildren.length - 1// 四个索引指向的 vnode 节点let oldStartVNode = oldChildren[oldStartIdx]let oldEndVNode = oldChildren[oldEndIdx]let newStartVNode = newChildren[newStartIdx]let newEndVNode = newChildren[newEndIdx]while (oldStartIdx <= oldEndIdx && newStartIdx <= newEndIdx) {if (oldStartVNode.key === newStartVNode.key) {// 步骤一:oldStartVNode 和 newStartVNode 比较// 调用 patch 函数在 oldStartVNode 与 newStartVNode 之间打补丁+                 patch(oldStartVNode, newStartVNode, container)// 更新相关索引,指向下一个位置+                 oldStartVNode = oldChildren[++oldStartIdx]+                 newStartVNode = newChildren[++newStartIdx]} else if (oldEndVNode.key === newEndVNode.key) {// 步骤二:oldEndVNode 和 newEndVNode 比较// 节点在新的顺序中仍然处于尾部,不需要移动,但仍需打补丁patch(oldEndVNode, newEndVNode, container)// 更新索引和头尾部节点变量oldEndVNode = oldChildren[--oldEndIdx]newEndVNode = newChildren[--newEndIdx]} else if(oldStartVNode.key === newEndVNode.key) {// 步骤三:oldStartVNode 和 newEndVNode 比较patch(oldStartVNode, newEndVNode, container)insert(oldStartVNode.el, container, oldEndVNode.el.nextSibling)oldStartVNode = oldChildren[++oldStartIdx]newEndVNode = newChildren[--newEndIdx]} else if (oldEndVNode.key === newStartVNode.key) {// 我们找到了具有相同 key 值的节点。这说明,原来处于尾部的节点在新的顺序中应该处于头部。// 于是,我们只需要以头部元素oldStartVNode.el 作为锚点,将尾部元素 oldEndVNode.el 移动到锚点前面即可。// 但需要注意的是,在进行 DOM 的移动操作之前,仍然需要调用 patch 函数在新旧虚拟节点之间打补丁。// 第四步:oldEndVNode 和 newStartVNode 比较// 仍然需要调用 patch 函数进行打补丁patch(oldEndVNode, newStartVNode, container)// 移动dom操作  oldEndVNode.el 移动到 oldStartVNode.el 前面insert(oldEndVNode.el, container, oldStartVNode.el)// 移动 DOM 完成后,更新索引值,指向下一个位置oldEndVNode = oldChildren[--oldEndIdx]newStartVNode = newChildren[++newStartIdx]}}}

在这一轮更新之后,新旧两组子节点与真实 DOM 节点的状态如图下图 10-10 所示。

请添加图片描述

双端比较的优势

优势:减少移动操作。

案例分析:如下图的新旧两组子节点:
请添加图片描述

简单diff:移动两次
请添加图片描述

双端diff:移动一次

请添加图片描述

非理想状态的处理方式

第一轮都无法命中

  • 旧的一组子节点:p-1、p-2、p-3、p-4。
  • 新的一组子节点:p-2、p-4、p-1、p-3。

当我们尝试按照双端 Diff 算法的思路进行第一轮比较时,会发现无法命中四个步骤中的任何一步。这个时候怎么办呢?这时,我们只能通过增加额外的处理步骤来处理这种非理想情况。既然两个头部和两个尾部的四个节点中都没有可复用的节点,那么我们就尝试看看非头部、非尾部的节点能否复用。具体做法是,拿新的一组子节点中的头部节点去旧的一组子节点中寻找:如下面的代码:

while (oldStartIdx <= oldEndIdx && newStartIdx <= newEndIdx) {if (oldStartVNode.key === newStartVNode.key) {// 步骤一:oldStartVNode 和 newStartVNode 比较// 调用 patch 函数在 oldStartVNode 与 newStartVNode 之间打补丁patch(oldStartVNode, newStartVNode, container)// 更新相关索引,指向下一个位置oldStartVNode = oldChildren[++oldStartIdx]newStartVNode = newChildren[++newStartIdx]} else if (oldEndVNode.key === newEndVNode.key) {// 步骤二:oldEndVNode 和 newEndVNode 比较// 节点在新的顺序中仍然处于尾部,不需要移动,但仍需打补丁patch(oldEndVNode, newEndVNode, container)// 更新索引和头尾部节点变量oldEndVNode = oldChildren[--oldEndIdx]newEndVNode = newChildren[--newEndIdx]} else if(oldStartVNode.key === newEndVNode.key) {// 步骤三:oldStartVNode 和 newEndVNode 比较patch(oldStartVNode, newEndVNode, container)insert(oldStartVNode.el, container, oldEndVNode.el.nextSibling)oldStartVNode = oldChildren[++oldStartIdx]newEndVNode = newChildren[--newEndIdx]} else if (oldEndVNode.key === newStartVNode.key) {// 我们找到了具有相同 key 值的节点。这说明,原来处于尾部的节点在新的顺序中应该处于头部。// 于是,我们只需要以头部元素oldStartVNode.el 作为锚点,将尾部元素 oldEndVNode.el 移动到锚点前面即可。// 但需要注意的是,在进行 DOM 的移动操作之前,仍然需要调用 patch 函数在新旧虚拟节点之间打补丁。// 第四步:oldEndVNode 和 newStartVNode 比较// 仍然需要调用 patch 函数进行打补丁patch(oldEndVNode, newStartVNode, container)// 移动dom操作  oldEndVNode.el 移动到 oldStartVNode.el 前面insert(oldEndVNode.el, container, oldStartVNode.el)// 移动 DOM 完成后,更新索引值,指向下一个位置oldEndVNode = oldChildren[--oldEndIdx]newStartVNode = newChildren[++newStartIdx]} else {
+					// 处理非理想情况// 在旧的一 组子节点中,找到与新的一组子节点的头部节点具有相同 key 值的节点// 遍历旧的一组子节点,试图寻找与 newStartVNode 拥有相同 key 值的节点// idxInOld 就是新的一组子节点的头部节点在旧的一组子节点中的索引+                   const idxInOld = oldChildren.findIndex(node => node.key === newStartVNode.key)}}

如下图在旧子节点中寻找可复用节点:
请添加图片描述

function patchChildren(n1, n2, container) {patchKeyedChildren(n1, n2, container)}function patchKeyedChildren(n1, n2, container){const oldChildren = n1.children const newChildren = n2.children// 四个索引值let oldStartIdx = 0let oldEndIdx = oldChildren.length - 1let newStartIdx = 0let newEndIdx = newChildren.length - 1// 四个索引指向的 vnode 节点let oldStartVNode = oldChildren[oldStartIdx]let oldEndVNode = oldChildren[oldEndIdx]let newStartVNode = newChildren[newStartIdx]let newEndVNode = newChildren[newEndIdx]while (oldStartIdx <= oldEndIdx && newStartIdx <= newEndIdx) {if (oldStartVNode.key === newStartVNode.key) {// 步骤一:oldStartVNode 和 newStartVNode 比较// 调用 patch 函数在 oldStartVNode 与 newStartVNode 之间打补丁patch(oldStartVNode, newStartVNode, container)// 更新相关索引,指向下一个位置oldStartVNode = oldChildren[++oldStartIdx]newStartVNode = newChildren[++newStartIdx]} else if (oldEndVNode.key === newEndVNode.key) {// 步骤二:oldEndVNode 和 newEndVNode 比较// 节点在新的顺序中仍然处于尾部,不需要移动,但仍需打补丁patch(oldEndVNode, newEndVNode, container)// 更新索引和头尾部节点变量oldEndVNode = oldChildren[--oldEndIdx]newEndVNode = newChildren[--newEndIdx]} else if(oldStartVNode.key === newEndVNode.key) {// 步骤三:oldStartVNode 和 newEndVNode 比较patch(oldStartVNode, newEndVNode, container)insert(oldStartVNode.el, container, oldEndVNode.el.nextSibling)oldStartVNode = oldChildren[++oldStartIdx]newEndVNode = newChildren[--newEndIdx]} else if (oldEndVNode.key === newStartVNode.key) {// 我们找到了具有相同 key 值的节点。这说明,原来处于尾部的节点在新的顺序中应该处于头部。// 于是,我们只需要以头部元素oldStartVNode.el 作为锚点,将尾部元素 oldEndVNode.el 移动到锚点前面即可。// 但需要注意的是,在进行 DOM 的移动操作之前,仍然需要调用 patch 函数在新旧虚拟节点之间打补丁。// 第四步:oldEndVNode 和 newStartVNode 比较// 仍然需要调用 patch 函数进行打补丁patch(oldEndVNode, newStartVNode, container)// 移动dom操作  oldEndVNode.el 移动到 oldStartVNode.el 前面insert(oldEndVNode.el, container, oldStartVNode.el)// 移动 DOM 完成后,更新索引值,指向下一个位置oldEndVNode = oldChildren[--oldEndIdx]newStartVNode = newChildren[++newStartIdx]}  else {// 处理非理想情况// 在旧的一 组子节点中,找到与新的一组子节点的头部节点具有相同 key 值的节点// 遍历旧的一组子节点,试图寻找与 newStartVNode 拥有相同 key 值的节点// idxInOld 就是新的一组子节点的头部节点在旧的一组子节点中的索引const idxInOld = oldChildren.findIndex(node => node.key === newStartVNode.key)// idxInOld 大于 0,说明找到了可复用的节点,并且需要将其对应的真实DOM 移动到头部+                   if(idxInOld > 0) {+                       // idxInOld 位置对应的 vnode 就是需要移动的节点const vnodeToMove = oldChildren[idxInOld]// 不要忘记除移动操作外还应该打补丁+                       patch(vnodeToMove, newStartVNode, container)// 将 vnodeToMove.el 移动到头部节点 oldStartVNode.el 之前,因此使用后者作为锚点
+                        insert(vnodeToMove.el, container, oldStartVNode.el)// 由于位置 idxInOld 处的节点所对应的真实 DOM 已经移动到了别处,因此将其设置为 undefined+                       oldChildren[idxInOld] = undefined// 最后更新 newStartIdx 到下一个位置+                       newStartVNode = newChildren[++newStartIdx]}}}}

在上面这段代码中,首先判断 idxInOld 是否大于 0。如果条件 成立,则说明找到了可复用的节点,然后将该节点对应的真实 DOM 移 动到头部。为此,我们先要获取需要移动的节点,这里的 oldChildren[idxInOld] 所指向的节点就是需要移动的节点。在移 动节点之前,不要忘记调用 patch 函数进行打补丁。接着,调用 insert 函数,并以现在的头部节点对应的真实 DOM 节点 oldStartVNode.el 作为锚点参数来完成节点的移动操作。当节点移 动完成后,还有两步工作需要做:

    1. 由于处于 idxInOld 处的节点已经处理过了(对应的真实 DOM 移到了别处),因此我们应该将 oldChildren[idxInOld] 设 置为undefined。
    1. 新的一组子节点中的头部节点已经处理完毕,因此将 newStartIdx 前进到下一个位置。

经过上述两个步骤的操作后,新旧两组子节点以及真实 DOM 节点 的状态如图 下图所示:
请添加图片描述
此时,真实 DOM 的顺序为:p-2、p-1、p-3、p-4。接着,双端 Diff 算法会继续进行。如下图所示:
请添加图片描述

第一步:比较旧的一组子节点中的头部节点 p-1 与新的一组子节点中的头部节点 p-4,两者 key 值不同,不可复用。
第二步:比较旧的一组子节点中的尾部节点 p-4 与新的一组子节点中的尾部节点 p-3,两者 key 值不同,不可复用。
第三步:比较旧的一组子节点中的头部节点 p-1 与新的一组子节点中的尾部节点 p-3,两者 key 值不同,不可复用。
第四步:比较旧的一组子节点中的尾部节点 p-4 与新的一组子节点中的头部节点 p-4,两者的 key 值相同,可以复用。

在这一轮比较的第四步中,我们找到了可复用的节点。因此,按照双端 Diff 算法的逻辑移动真实 DOM,即把节点 p-4 对应的真实DOM 移动到旧的一组子节点中头部节点 p-1 所对应的真实 DOM 前面,如图 下图 所示:

请添加图片描述

此时,真实 DOM 节点的顺序是:p-2、p-4、p-1、p-3。接着,开始下一轮的比较:
第一步:比较旧的一组子节点中的头部节点 p-1 与新的一组子节点中的头部节点 p-1,两者的 key 值相同,可以复用。

在这一轮比较中,第一步就找到了可复用的节点。由于两者都处于头部,所以不需要对真实 DOM 进行移动,只需要打补丁即可。在这一步操作过后,新旧两组子节点与真实 DOM 节点的状态如图 下图 所示:
请添加图片描述

此时,真实 DOM 节点的顺序是:p-2、p-4、p-1、p-3。接着,进行下一轮的比较。需要注意的一点是,此时旧的一组子节点的
头部节点是 undefined。这说明该节点已经被处理过了,因此不需要再处理它了,直接跳过即可。为此,我们需要补充这部分逻辑的代码,具体实现如下:

while (oldStartIdx <= oldEndIdx && newStartIdx <= newEndIdx) {// 增加两个判断分支,如果头尾部节点为 undefined,则说明该节点已经被处理过了,直接跳到下一个位置+ if (!oldStartVNode) {+     oldStartVNode = oldChildren[++oldStartIdx]+ } else if (!oldEndVNode) {+ 	 oldEndVNode = oldChildren[--oldEndIdx]+ }else if (oldStartVNode.key === newStartVNode.key) {// 步骤一:oldStartVNode 和 newStartVNode 比较// 调用 patch 函数在 oldStartVNode 与 newStartVNode 之间打补丁patch(oldStartVNode, newStartVNode, container)// 更新相关索引,指向下一个位置oldStartVNode = oldChildren[++oldStartIdx]newStartVNode = newChildren[++newStartIdx]} else if (oldEndVNode.key === newEndVNode.key) {// 步骤二:oldEndVNode 和 newEndVNode 比较// 节点在新的顺序中仍然处于尾部,不需要移动,但仍需打补丁patch(oldEndVNode, newEndVNode, container)// 更新索引和头尾部节点变量oldEndVNode = oldChildren[--oldEndIdx]newEndVNode = newChildren[--newEndIdx]} else if(oldStartVNode.key === newEndVNode.key) {// 步骤三:oldStartVNode 和 newEndVNode 比较patch(oldStartVNode, newEndVNode, container)insert(oldStartVNode.el, container, oldEndVNode.el.nextSibling)oldStartVNode = oldChildren[++oldStartIdx]newEndVNode = newChildren[--newEndIdx]} else if (oldEndVNode.key === newStartVNode.key) {// 我们找到了具有相同 key 值的节点。这说明,原来处于尾部的节点在新的顺序中应该处于头部。// 于是,我们只需要以头部元素oldStartVNode.el 作为锚点,将尾部元素 oldEndVNode.el 移动到锚点前面即可。// 但需要注意的是,在进行 DOM 的移动操作之前,仍然需要调用 patch 函数在新旧虚拟节点之间打补丁。// 第四步:oldEndVNode 和 newStartVNode 比较// 仍然需要调用 patch 函数进行打补丁patch(oldEndVNode, newStartVNode, container)// 移动dom操作  oldEndVNode.el 移动到 oldStartVNode.el 前面insert(oldEndVNode.el, container, oldStartVNode.el)// 移动 DOM 完成后,更新索引值,指向下一个位置oldEndVNode = oldChildren[--oldEndIdx]newStartVNode = newChildren[++newStartIdx]}  else {// 处理非理想情况// 在旧的一 组子节点中,找到与新的一组子节点的头部节点具有相同 key 值的节点// 遍历旧的一组子节点,试图寻找与 newStartVNode 拥有相同 key 值的节点// idxInOld 就是新的一组子节点的头部节点在旧的一组子节点中的索引const idxInOld = oldChildren.findIndex(node => node.key === newStartVNode.key)// idxInOld 大于 0,说明找到了可复用的节点,并且需要将其对应的真实DOM 移动到头部if(idxInOld > 0) {// idxInOld 位置对应的 vnode 就是需要移动的节点const vnodeToMove = oldChildren[idxInOld]// 不要忘记除移动操作外还应该打补丁patch(vnodeToMove, newStartVNode, container)// 将 vnodeToMove.el 移动到头部节点 oldStartVNode.el 之前,因此使用后者作为锚点insert(vnodeToMove.el, container, oldStartVNode.el)// 由于位置 idxInOld 处的节点所对应的真实 DOM 已经移动到了别处,因此将其设置为 undefinedoldChildren[idxInOld] = undefined// 最后更新 newStartIdx 到下一个位置newStartVNode = newChildren[++newStartIdx]}}
}

观察上面的代码,在循环开始时,我们优先判断头部节点和尾部节点是否存在。如果不存在,则说明它们已经被处理过了,直接跳到下一个位置即可。在这一轮比较过后,新旧两组子节点与真实 DOM 节点的状态如图 下图 所示:
请添加图片描述

现在,四个步骤又重合了,接着进行最后一轮的比较:
第一步:比较旧的一组子节点中的头部节点 p-3 与新的一组子节点中的头部节点 p-3,两者的 key 值相同,可以复用。在第一步中找到了可复用的节点。由于两者都是头部节点,因此不需要进行 DOM 移动操作,直接打补丁即可。在这一轮比较过后,最终状态如图 下图 所示:
请添加图片描述
这时,满足循环停止的条件,于是更新完成。最终,真实 DOM 节点的顺序与新的一组子节点的顺序一致,都是:p-2、p-4、p-1、p-3。

添加新元素

添加新元素的时机:1.四个步骤的比较中都找不到可复用的节点 。 2.尝试拿新的一组子节点中的头部节点 p-4 去旧的一组子节点中寻找具有相同 key 值的节点,但在旧的一组子节点中根本就没有 p-4 节点。这说明节点 p-4 是一个新增节点。

案例1如下:

  • 旧的一组子节点:p-1、p-2、p-3。
  • 新的一组子节点:p-4、p-1、p-3、p-2。
    请添加图片描述

代码如下:

while (oldStartIdx <= oldEndIdx && newStartIdx <= newEndIdx) {if (!oldStartVNode) {oldStartVNode = oldChildren[++oldStartIdx]} else if (oldStartVNode.key === newStartVNode.key) {// 步骤一:oldStartVNode 和 newStartVNode 比较// 调用 patch 函数在 oldStartVNode 与 newStartVNode 之间打补丁patch(oldStartVNode, newStartVNode, container)// 更新相关索引,指向下一个位置oldStartVNode = oldChildren[++oldStartIdx]newStartVNode = newChildren[++newStartIdx]} else if (oldEndVNode.key === newEndVNode.key) {// 步骤二:oldEndVNode 和 newEndVNode 比较// 节点在新的顺序中仍然处于尾部,不需要移动,但仍需打补丁patch(oldEndVNode, newEndVNode, container)// 更新索引和头尾部节点变量oldEndVNode = oldChildren[--oldEndIdx]newEndVNode = newChildren[--newEndIdx]} else if(oldStartVNode.key === newEndVNode.key) {// 步骤三:oldStartVNode 和 newEndVNode 比较patch(oldStartVNode, newEndVNode, container)insert(oldStartVNode.el, container, oldEndVNode.el.nextSibling)oldStartVNode = oldChildren[++oldStartIdx]newEndVNode = newChildren[--newEndIdx]} else if (oldEndVNode.key === newStartVNode.key) {// 我们找到了具有相同 key 值的节点。这说明,原来处于尾部的节点在新的顺序中应该处于头部。// 于是,我们只需要以头部元素oldStartVNode.el 作为锚点,将尾部元素 oldEndVNode.el 移动到锚点前面即可。// 但需要注意的是,在进行 DOM 的移动操作之前,仍然需要调用 patch 函数在新旧虚拟节点之间打补丁。// 第四步:oldEndVNode 和 newStartVNode 比较// 仍然需要调用 patch 函数进行打补丁patch(oldEndVNode, newStartVNode, container)// 移动dom操作  oldEndVNode.el 移动到 oldStartVNode.el 前面insert(oldEndVNode.el, container, oldStartVNode.el)// 移动 DOM 完成后,更新索引值,指向下一个位置oldEndVNode = oldChildren[--oldEndIdx]newStartVNode = newChildren[++newStartIdx]}  else {// 处理非理想情况// 在旧的一 组子节点中,找到与新的一组子节点的头部节点具有相同 key 值的节点// 遍历旧的一组子节点,试图寻找与 newStartVNode 拥有相同 key 值的节点// idxInOld 就是新的一组子节点的头部节点在旧的一组子节点中的索引const idxInOld = oldChildren.findIndex(node => node.key === newStartVNode.key)// idxInOld 大于 0,说明找到了可复用的节点,并且需要将其对应的真实DOM 移动到头部if(idxInOld > 0) {// idxInOld 位置对应的 vnode 就是需要移动的节点const vnodeToMove = oldChildren[idxInOld]// 不要忘记除移动操作外还应该打补丁patch(vnodeToMove, newStartVNode, container)// 将 vnodeToMove.el 移动到头部节点 oldStartVNode.el 之前,因此使用后者作为锚点insert(vnodeToMove.el, container, oldStartVNode.el)// 由于位置 idxInOld 处的节点所对应的真实 DOM 已经移动到了别处,因此将其设置为 undefinedoldChildren[idxInOld] = undefined// 最后更新 newStartIdx 到下一个位置newStartVNode = newChildren[++newStartIdx]} else {+          				// 新增节点
+           			// 将 newStartVNode 作为新节点挂载到头部,使用当前头部节点oldStartVNode.el 作为锚点
+           			patch(null, newStartVNode, container, oldStartVNode.el)}}}

当条件idxInOld > 0不成立时,说明 newStartVNode 节点是全新的节点。又由于 newStartVNode 节点 是头部节点,因此我们应该将其作为新的头部节点进行挂载。所以, 在调用 patch 函数挂载节点时,我们使用 oldStartVNode.el 作为 锚点。在这一步操作完成之后,新旧两组子节点以及真实 DOM 节点的 状态如下图所示:
请添加图片描述

案例2

  • 旧的一组子节点:p-1、p-2、p-3。
  • 新的一组子节点:p-4、p-1、p-2、p-3。
    第一步:比较旧的一组子节点中的头部节点 p-1 与新的一组子节点中的头部节点 p-4,两者的 key 值不同,不可以复用。
    第二步:比较旧的一组子节点中的尾部节点 p-3 与新的一组子节点中的尾部节点 p-3,两者的 key 值相同,可以复用。
    在第二步中找到了可复用的节点,因此进行更新。更新后的新旧两组子节点以及真实 DOM 节点的状态如图下图 所示:
    请添加图片描述
    接着进行下一轮的比较:
    第一步:比较旧的一组子节点中的头部节点 p-1 与新的一组子节点中的头部节点 p-4,两者的 key 值不同,不可以复用。
    第二步:比较旧的一组子节点中的尾部节点 p-2 与新的一组子节点中的尾部节点 p-2,两者的 key 值相同,可以复用。
    我们又在第二步找到了可复用的节点,于是再次进行更新。更新后的新旧两组子节点以及真实 DOM 节点的状态如图 下图 所示:

请添加图片描述
接着,进行下一轮的更新:
第一步:比较旧的一组子节点中的头部节点 p-1 与新的一组子节点中的头部节点 p-4,两者的 key 值不同,不可以复用。
第二步:比较旧的一组子节点中的尾部节点 p-1 与新的一组子节点中的尾部节点 p-1,两者的 key 值相同,可以复用。

还是在第二步找到了可复用的节点,再次进行更新。更新后的新旧两组子节点以及真实 DOM 节点的状态如图 下图 所示:
请添加图片描述

当这一轮更新完毕后,由于变量 oldStartIdx 的值大于oldEndIdx 的值,满足更新停止的条件,因此更新停止。但通过观察可知,节点 p-4 在整个更新过程中被遗漏了,没有得到任何处理,这说明我们的算法是有缺陷的。为了弥补这个缺陷,我们需要添加额外的处理代码:

 while (oldStartIdx <= oldEndIdx && newStartIdx <= newEndIdx) { // 省略部分代码}// 循环结束后检查索引值的情况,
+  if (oldEndIdx < oldStartIdx && newStartIdx <= newEndIdx) {
+ 	// 如果满足条件,则说明有新的节点遗留,需要挂载它们
+ for (let i = newStartIdx; i <= newEndIdx; i++) {
+      patch(null, newChildren[i], container, oldStartVNode.el)+  }}

我们在 while 循环结束后增加了一个 if 条件语句,检查四个索引值的情况。根据图上图可知,如果条件oldEndIdx <oldStartIdx && newStartIdx <= newEndIdx成立,说明新的一组子节点中有遗留的节点需要作为新节点挂载。哪些节点是新节点呢?索引值位于 newStartIdx 和 newEndIdx 这个区间内的节点都是新节点。``于是我们开启一个 for 循环来遍历这个区间内的节点并逐一挂载。挂载时的锚点仍然使用当前的头部节点oldStartVNode.el,这样就完成了对新增元素的处理。

移除不存在的元素

案例如下:

  • 旧的一组子节点:p-1、p-2、p-3。
  • 新的一组子节点:p-1、p-3。
    请添加图片描述

可以看到,在新的一组子节点中 p-2 节点已经不存在了。为了搞清楚应该如何处理节点被移除的情况,我们还是按照双端 Diff 算法的思路执行更新。
第一步:比较旧的一组子节点中的头部节点 p-1 与新的一组子节点中的头部节点 p-1,两者的 key 值相同,可以复用。
在第一步的比较中找到了可复用的节点,于是执行更新。在这一轮比较过后,新旧两组子节点以及真实 DOM 节点的状态如图下图所示:
请添加图片描述
接着,执行下一轮更新:
第一步:比较旧的一组子节点中的头部节点 p-2 与新的一组子节点中的头部节点 p-3,两者的 key 值不同,不可以复用。
第二步:比较旧的一组子节点中的尾部节点 p-3 与新的一组子节点中的尾部节点 p-3,两者的 key 值相同,可以复用。

在第二步中找到了可复用的节点,于是进行更新。更新后的新旧两组子节点以及真实 DOM 节点的状态如图 下图所示:
请添加图片描述
此时变量 newStartIdx 的值大于变量 newEndIdx 的值,满足更新停止的条件,于是更新结束。但观察图 10-34 可知,旧的一组子节点中存在未被处理的节点,应该将其移除。因此,我们需要增加额外的代码来处理它,如下所示:

while (oldStartIdx <= oldEndIdx && newStartIdx <= newEndIdx) { // 省略部分代码}// 循环结束后检查索引值的情况,
if (oldEndIdx < oldStartIdx && newStartIdx <= newEndIdx) {// 如果满足条件,则说明有新的节点遗留,需要挂载它们for (let i = newStartIdx; i <= newEndIdx; i++) {patch(null, newChildren[i], container, oldStartVNode.el)}
+ } else if (newEndIdx < newStartIdx && oldStartIdx <= oldEndIdx) {
+ 	 for (let i = oldStartIdx; i <= oldEndIdx; i++) {
+		unmount(oldChildren[i])
+	}}

与处理新增节点类似,我们在 while 循环结束后又增加了一个else…if 分支,用于卸载已经不存在的节点。由图 上图 可知,索引值位于 oldStartIdx 和 oldEndIdx 这个区间内的节点都应该被卸载,于是我们开启一个 for 循环将它们逐一卸载。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/84179.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

数据结构——双向链表

双向链表实质上是在单向链表的基础上加上了一个指针指向后面地址 单向链表请参考http://t.csdn.cn/3Gxk9 物理结构 首先我们看一下两种链表的物理结构 我们可以看到&#xff1a;双向在单向基础上加入了一个指向上一个地址的指针&#xff0c;如此操作我们便可以向数组一样操作…

【TypeScript】中关于 { 声明合并 } 的使用及注意事项

概念&#xff1a; 在TS中&#xff0c;如果定义了多个相同命名的函数&#xff0c;接口或者class 类&#xff0c;那么它们会自动合并成一个类型 函数的合并&#xff1a; 前面章节讲解的函数重载就是使用了定义多个函数的类型进行合并&#xff1a; function reverse(x: number):…

树状结构数据,筛选指定数据

问题描述&#xff1a; 应用场景和需求&#xff1a;对一个树状结构的数据&#xff0c;进行CRUD 时&#xff0c;想筛选出 树状结构数据中存在变动的部分。 操作步骤 准备需要的数据&#xff1a; 1.先拿到 你原来的树状结构数据 2.再筛选出 需要保留的数据集合id&#xff0c;也…

【《深入浅出计算机网络》学习笔记】第1章 概述

内容来自b站湖科大教书匠《深入浅出计算机网络》视频和《深入浅出计算机网络》书籍 目录 1.1 信息时代的计算机网络 1.1.1 计算机网络的各类应用 1.1.2 计算机网络带来的负面问题 1.2 因特网概述 1.2.1 网络、互联网与因特网的区别与关系 1.2.1.1 网络 1.2.1.2 互联网 …

Microsoft Message Queuing Denial-of-Service Vulnerability

近期官方公布了一个MSMQ的拒绝服务漏洞&#xff0c;可能因为网络安全设备的更新&#xff0c;影响业务&#xff0c;值得大家关注。 漏洞具体描述参见如下&#xff1a; Name: Microsoft Message Queuing Denial-of-Service Vulnerability Description: Microsoft Message Queuing…

Jenkins持续集成-快速上手

Jenkins持续集成-快速上手 注&#xff1a;Jenkins一般不单独使用&#xff0c;而是需要依赖代码仓库&#xff0c;构建工具等。 搭配组合&#xff1a;GitGitee&#xff08;GitHub、GitLab&#xff09;MavenJenkins 前置准备 常见安装方式&#xff1a; war包Docker容器实例&…

W5100S-EVB-PICO 做TCP Server进行回环测试(六)

前言 上一章我们用W5100S-EVB-PICO开发板做TCP 客户端连接服务器进行数据回环测试&#xff0c;那么本章将用开发板做TCP服务器来进行数据回环测试。 TCP是什么&#xff1f;什么是TCP Server&#xff1f;能干什么&#xff1f; TCP (Transmission Control Protocol) 是一种面向连…

从Spring源码看创建对象的过程

从Spring源码看创建对象的过程 Spring对于程序员set注入的属性叫做属性的填充、对于set注入之后的处理&#xff08;包括BeanPostProcessor的处理、初始化方法的处理&#xff09;叫做初始化。 研读AbstractBeanFactory类中的doGetBean()方法 doGetBean()方法首先完成的工作是…

【Linux操作系统】makefile入门:一个规则-两个函数-三个变量

在Linux中&#xff0c;makefile是一种非常重要的工具&#xff0c;用于自动化构建和管理项目。它可以帮助开发人员轻松地编译和链接程序&#xff0c;同时还可以处理依赖关系和增量构建等问题。在makefile中&#xff0c;我们将重点介绍makefile中的一个规则&#xff0c;两个函数和…

湘大 XTU OJ 1214 A+B IV 题解:数位移动的本质+布尔变量标记+朴素模拟

一、链接 AB IV 二、题目 题目描述 小明喜欢做ab的算术&#xff0c;但是他经常忘记把末位对齐&#xff0c;再进行加&#xff0c;所以&#xff0c;经常会算错。 比如1213&#xff0c;他把12左移了1位&#xff0c;结果变成了133。 小明已经算了一些等式&#xff0c;请计算一下…

harbor搭建

回到目录 Harbor 是 VMware 公司开源的企业级 Docker Registry 项目&#xff0c;其目标是帮助用户迅速搭建一个企业级的 Docker Registry 服务 通俗的讲&#xff0c;harbor是一个私人镜像存储服务器 1 下载安装 进入官网&#xff0c;下载一个离线安装包,harbor官网下载 这…

Vc - Qt - QToolButton

QToolButton 是 Qt 框架中的一个类&#xff0c;是 QPushButton 的子类。它可以显示一个可单击的按钮&#xff0c;并且可以与弹出菜单、图标和文本等进行关联。 QToolButton的一些常见特性和用法包括&#xff1a; 设置文本&#xff1a;使用 setText() 函数设置按钮上的文本。设置…

AES加密(1):AES基础知识和计算过程

从产品代码的安全角度考虑&#xff0c;我们需要对代码、数据进行加密。加密的算法有很多种&#xff0c;基于速度考虑&#xff0c;我们一般使用对称加密算法&#xff0c;其中有一种常见的对称加密算法&#xff1a;AES(Advanced Encryption Standard)。在一些高端的MCU&#xff0…

[虚幻引擎] UE DTBase64 插件说明 使用蓝图对字符串或文件进行Base64加密解密

本插件可以在虚幻引擎中使用蓝图对字符串&#xff0c;字节数组&#xff0c;文件进行Base64的加密和解密。 目录 1. 节点说明 String To Base64 Base64 To String Binary To Base64 Base64 To Binary File To Base64 Base64 To File 2. 案例演示 3. 插件下载 1. 节点说…

普罗米修斯之一实现图形化监控

普罗米修斯之一实现图形化监控 1&#xff1a;prometheus1. 下载&#xff1a;2. 安装&#xff1a;3. 启动&#xff1a;1&#xff1a;启动方式之一加入systemctl2&#xff1a;启动方式之二---直接启动3&#xff1a;启动方式之三----后台运行 4&#xff1a;默认配置文件prometheus…

Idea使用Docker插件实现maven打包自动构建镜像

Docker 开启TCP 服务 vi /lib/systemd/system/docker.service改写以下内容 ExecStart/usr/bin/dockerd -H tcp://0.0.0.0:2375 -H unix:///var/run/docker.sock重启服务 #重新加载配置文件 systemctl daemon-reload #重启服务 systemctl restart docker.service此时docker已…

考研408 | 【计算机网络】物理层

导图&#xff1a; 一、通信基础 基本概念&#xff1a; 物理层接口特性&#xff1a;物理层解决如何在连接各种计算机的传输媒体上传输数据比特流&#xff0c;而不是指具体的传输媒体。 物理层主要任务&#xff1a;确定与传输媒体接口有关的一些特性 典型的数据通信模型 数据通…

Springboot中拦截GET请求获取请求参数验证合法性

目录 目的 核心方法 完整代码 创建拦截器 注册拦截器 测试效果 目的 在Springboot中创建拦截器拦截所有GET类型请求&#xff0c;获取请求参数验证内容合法性防止SQL注入&#xff08;该方法仅适用拦截GET类型请求&#xff0c;POST类型请求参数是在body中&#xff0c;所以下面…

WhatsApp 实时聊天小插件:快速触达客户的秘密

当您进入商店时&#xff0c;您希望销售人员会向您打招呼&#xff0c;或者至少在您需要时可以找到人提供帮助。对于电子商务商店&#xff0c;客户的期望不会降低。但谁应该担任 24-7的商店经理&#xff1f;实时聊天可以成为您的电子商务商店经理。 什么是 WhatsApp 实时聊天小插…

MySQL 索引 详解

一、索引概述 索引是帮助 MySQL 高效获取数据的数据结构&#xff08;有序&#xff09;。在数据之外&#xff0c;数据库系统还维护着满足特定查找算法的数据结构&#xff0c;这些数据结构以某种方式引用&#xff08;指向&#xff09;数据&#xff0c;这样就可以在这些数据结构上…