时序预测 | MATLAB实现BO-LSTM贝叶斯优化长短期记忆神经网络时间序列预测

时序预测 | MATLAB实现BO-LSTM贝叶斯优化长短期记忆神经网络时间序列预测

目录

    • 时序预测 | MATLAB实现BO-LSTM贝叶斯优化长短期记忆神经网络时间序列预测
      • 效果一览
      • 基本介绍
      • 模型搭建
      • 程序设计
      • 参考资料

效果一览

1

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

基本介绍

MATLAB实现BO-LSTM贝叶斯优化长短期记忆神经网络时间序列预测。基于贝叶斯(bayes)优化长短期记忆神经网络的时间序列预测,BO-LSTM/Bayes-LSTM时间序列预测模型。
1.优化参数为:学习率,隐含层节点,正则化参数。
2.评价指标包括:R2、MAE、MSE、RMSE和MAPE等。
3.运行环境matlab2018b及以上。

模型搭建

贝叶斯优化是一种通过迭代优化来提高模型性能的方法,它可以用于优化神经网络的超参数选择。而长短期记忆神经网络(Long Short-Term Memory,LSTM)是一种适用于处理时间序列数据的循环神经网络(Recurrent Neural Network,RNN)架构。
在时间序列预测中,可以将贝叶斯优化用于调整LSTM模型的超参数,以获得更好的预测结果。以下是使用贝叶斯优化调整LSTM模型的步骤:

  • 定义LSTM模型的目标函数:首先,需要定义一个目标函数,它接受LSTM模型的超参数作为输入,并返回一个评估指标,如均方根误差(Root Mean Squared Error,RMSE)或平均绝对误差(Mean Absolute Error,MAE)。

  • 定义超参数空间:确定需要优化的LSTM模型的超参数以及它们的取值范围。例如,超参数可以包括LSTM的学习率,隐含层节点,正则化参数等。

  • 运行贝叶斯优化:使用贝叶斯优化算法(如高斯过程)在定义的超参数空间中进行迭代优化。每次迭代时,根据目标函数的评估结果选择下一个要探索的超参数组合。

  • 训练和评估LSTM模型:使用每个超参数组合训练一个LSTM模型,并在验证集上评估其性能。根据目标函数的评估结果确定最佳的超参数组合。

  • 模型选择和预测:选择具有最佳性能的LSTM模型,并使用该模型进行时间序列的预测。

需要注意的是,贝叶斯优化是一种计算密集型的方法,因为它需要在超参数空间中进行多次模型训练和评估。因此,在实际应用中,可能需要权衡计算资源和模型性能之间的关系。
总结来说,贝叶斯优化可以用于调整LSTM模型的超参数,帮助提高时间序列预测的性能。通过迭代优化超参数,可以找到最佳的超参数组合,从而改善预测结果。

  • 伪代码
    9
  • 通过调整优化算法调整模型参数,学习重复率和贝叶斯优化超参数来调整模型参数。

程序设计

  • 完整程序和数据获取方式1:私信博主回复MATLAB实现BO-LSTM贝叶斯优化长短期记忆神经网络时间序列预测,同等价值程序兑换;
  • 完整程序和数据下载方式2(资源处直接下载):MATLAB实现BO-LSTM贝叶斯优化长短期记忆神经网络时间序列预测;
  • 完整程序和数据下载方式3(订阅《LSTM长短期记忆神经网络》专栏,同时可阅读《LSTM长短期记忆神经网络》专栏内容,数据订阅后私信我获取):MATLAB实现BO-LSTM贝叶斯优化长短期记忆神经网络时间序列预测,专栏外只能获取该程序。
%%  优化算法参数设置
%参数取值上界(学习率,隐藏层节点,正则化系数)
%%  贝叶斯优化参数范围
optimVars = [optimizableVariable('NumOfUnits', [10, 50], 'Type', 'integer')optimizableVariable('InitialLearnRate', [1e-3, 1], 'Transform', 'log')optimizableVariable('L2Regularization', [1e-10, 1e-2], 'Transform', 'log')];%% 创建混合LSTM网络架构
% 输入特征维度
numFeatures  = f_;
% 输出特征维度
numResponses = 1;
FiltZise = 10;
%  创建"LSTM"模型layers = [...% 输入特征sequenceInputLayer([numFeatures 1 1],'Name','input')sequenceFoldingLayer('Name','fold')% LSTM特征学习lstmLayer(50,'Name','lstm1','RecurrentWeightsInitializer','He','InputWeightsInitializer','He')% LSTM输出lstmLayer(optVars.NumOfUnits,'OutputMode',"last",'Name','bil4','RecurrentWeightsInitializer','He','InputWeightsInitializer','He')dropoutLayer(0.25,'Name','drop3')% 全连接层fullyConnectedLayer(numResponses,'Name','fc')regressionLayer('Name','output')    ];layers = layerGraph(layers);layers = connectLayers(layers,'fold/miniBatchSize','unfold/miniBatchSize');%% LSTM训练选项
% 批处理样本
MiniBatchSize =128;
% 最大迭代次数
MaxEpochs = 500;options = trainingOptions( 'adam', ...'MaxEpochs',500, ...'GradientThreshold',1, ...'InitialLearnRate',optVars.InitialLearnRate, ...'LearnRateSchedule','piecewise', ...'LearnRateDropPeriod',400, ...'LearnRateDropFactor',0.2, ...'L2Regularization',optVars.L2Regularization,...'Verbose',false, ...'Plots','none');%% 训练混合网络
net = trainNetwork(XrTrain,YrTrain,layers,options);

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/129036772?spm=1001.2014.3001.5502
[2] https://blog.csdn.net/kjm13182345320/article/details/128690229

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/85216.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

无涯教程-Perl - lock函数

描述 此函数将咨询锁放在共享变量或THING中包含的引用对象上,直到该锁超出范围。 lock()是一个"弱关键字":这意味着,如果您在调用该函数之前已通过该名称定义了该函数,则将改为调用该函数。 语法 以下是此函数的简单语法- lock THING返回值 此函数不返回任何值…

校对软件在司法系统中的应用:加强刑事文书审查

校对软件在司法系统中的应用可以加强刑事文书审查,提高文书的准确性和可靠性。 以下是校对软件在刑事文书审查方面的应用: 1.语法和拼写检查:校对软件可以自动检查刑事文书中的语法错误和拼写错误。这包括句子结构、主谓一致、动词形式等方面…

Nginx启动报错- Failed to start The nginx HTTP and reverse proxy server

根据日志,仍然出现 “bind() to 0.0.0.0:8888 failed (13: Permission denied)” 错误。这意味着 Nginx 仍然无法绑定到 8888 端口,即使使用 root 权限。 请执行以下操作来进一步排查问题: 确保没有其他进程占用 8888 端口:使用以…

【Tomcat】tomcat的多实例和动静分离

多实例: 在一台服务器上有多台Tomcat;就算是多实例 安装telnet服务,可以用来测试端口通信是否正常 yum -y install telnettelnet 192.168.220.112 80 tomcat的日志文件 cd /usr/local/tomcat/logsvim catalina.out Tomcat多实例部署&…

[免费在线] 将 PDF 转换为 Excel 或 Excel 转换为 PDF | 5 工具

有了免费的在线 PDF 转换器,您可以轻松免费在线将 PDF 转换为 Excel 或 Excel 转换为 PDF。这篇文章为您筛选了 5 个最常用的工具。要从存储介质恢复错误删除或丢失的 PDF 文档、Excel 电子表格、Word 文件或任何其他文件,您可以使用免费的数据恢复程序 …

vscode-启动cljs

打开vscode ,打开cljs项目文件 先npm installvscode安装插件Calva: Clojure & ClojureScript启动REPL 选择Start yout project with a REPL and connect(a.k.a. jack) 后选择shadow-cljs,然后选择shadow,如果需要选择build的话&#xf…

海外电子商务源代码跨境系统开发,Java现成代码全开源

海外电子商务跨境系统的开发是一个复杂的过程,而利用现成的Java代码进行开发可以节省时间和成本。下面是海外电子商务跨境系统开发的全开源步骤。 第一步:需求分析和规划 在开发海外电子商务跨境系统之前,需要进行需求分析和规划。这包括确定…

MySQL多表连接查询3

目录 表结构 创建表 表数据 查询需求: 1.查询student表的所有记录 2.查询student表的第2条到4条记录 3.从student表查询所有学生的学号(id)、姓名(name)和院系(department)的信息 4.从s…

React使用antd的图片预览组件,点击哪个图片就预览哪个的设置

使用了官方推荐的相册模式的预览,但是点击预览之后,每次都是从图片列表的第一张开始预览,而不是点击哪张就从哪张开始预览: 所以这里我就封装了一下,对初始化预览的列表进行了逻辑处理: 当点击开始预览的…

竞赛项目 深度学习的水果识别 opencv python

文章目录 0 前言2 开发简介3 识别原理3.1 传统图像识别原理3.2 深度学习水果识别 4 数据集5 部分关键代码5.1 处理训练集的数据结构5.2 模型网络结构5.3 训练模型 6 识别效果7 最后 0 前言 🔥 优质竞赛项目系列,今天要分享的是 🚩 深度学习…

MongoDB 备份与恢复

1.1 MongoDB的常用命令 mongoexport / mongoimport mongodump / mongorestore 有以上两组命令在备份与恢复中进行使用。 1.1.1 导出工具mongoexport Mongodb中的mongoexport工具可以把一个collection导出成JSON格式或CSV格式的文件。可以通过参数指定导出的数据项&#xff0c…

Java多线程(十)

目录 一、synchronized基本特点 二、synchronized加锁工作过程 2.1 无锁 2.2 偏向锁 2.3 轻量级锁 2.4 重量级锁 三、synchronized其他优化操作 3.1 锁消除 3.2 锁粗化 一、synchronized基本特点 开始是乐观锁,如果锁冲突频繁就会转换成悲观锁开始是轻量级锁&#x…

机器学习---梯度下降代码

1. 归一化 # Read data from csv pga pd.read_csv("pga.csv") print(type(pga))print(pga.head())# Normalize the data 归一化值 (x - mean) / (std) pga.distance (pga.distance - pga.distance.mean()) / pga.distance.std() pga.accuracy (pga.accuracy - pg…

MySQL 数据类型总结

整形数据类型 1字节 8bit 2^8256

Mongodb:业务应用(1)

环境搭建参考&#xff1a;mongodb&#xff1a;环境搭建_Success___的博客-CSDN博客 需求&#xff1a; 在文章搜索服务中实现保存搜索记录到mongdb 并在搜索时查询出mongdb保存的数据 1、安装mongodb依赖 <dependency><groupId>org.springframework.data</groupI…

【办公自动化】使用Python一键提取PDF中的表格到Excel

&#x1f935;‍♂️ 个人主页&#xff1a;艾派森的个人主页 ✍&#x1f3fb;作者简介&#xff1a;Python学习者 &#x1f40b; 希望大家多多支持&#xff0c;我们一起进步&#xff01;&#x1f604; 如果文章对你有帮助的话&#xff0c; 欢迎评论 &#x1f4ac;点赞&#x1f4…

当编程遇上AI,纵享丝滑

目录 前言 一、提出需求 二、检查代码 三、进一步提出需求 总结 前言 自从CHATGPT火了以后&#xff0c;我发现我身边的人再也不怕写报告了&#xff0c;什么个人总结&#xff0c;汇报材料&#xff0c;年度总结&#xff0c;伸手就来&#xff08;反正哪些报告也没人看&#x…

腾讯云服务器CVM实例族有什么区别?怎么选?

腾讯云服务器CVM有多种实例族&#xff0c;如标准型S6、标准型S5、SA3实例、高IO型、内存、计算型及GPU型实例等&#xff0c;如何选择云服务器CVM实例规格呢&#xff1f;腾讯云服务器网建议根据实际使用场景选择云服务器CVM规格&#xff0c;例如Web网站应用可以选择标准型S5或S6…

python压缩pdf文件大小

pdf文件过大&#xff0c;经常会是一个问题&#xff0c;但是市面上基本上都是收费的工具&#xff0c;wps需要开会员才能使用。因此找了一个python库进行试验&#xff1a; 首先需要安装 pip install aspose-pdf 运行的代码&#xff1a; import aspose.pdf as apcompressPdfDo…

k8s ingress获取客户端客户端真实IP

背景 在Kubernetes中&#xff0c;获取客户端真实IP地址是一个常见需求。这是因为在负载均衡架构中&#xff0c;原始请求的源IP地址会被替换成负载均衡器的IP地址。 获取客户端真实IP的需求背景包括以下几点&#xff1a; 安全性&#xff1a;基于客户端IP进行访问控制和认证授…