clickhouse 删除操作

OLAP 数据库设计的宗旨在于分析适合一次插入多次查询的业务场景,市面上成熟的 AP 数据库在更新和删除操作上支持的均不是很好,当然 clickhouse 也不例外。但是不友好不代表不支持,本文主要介绍在 clickhouse 中如何实现数据的删除,以及最新版本中 clickhouse 所做的一些技术突破

Click_House_Delete_Statement_6fd661d851

一、mutation

刚接触 clickhouse 的小伙伴或许对 mutation 就很熟悉了,mutation 查询可以看成 alter 语句的变种。虽然 mutation 能够最终实现修改和删除的需求,但不能完全用通常意义的 delete 和 update 来理解,我们需要清醒的认识到它的不同:

  1. mutation 是一个很重的操作,适合批量数据操作
  2. 不支持事务、一旦操作立刻生效无法回滚
  3. mutation 为异步操作

1.1 实操

创建一张表用于测试 mutation 操作

create table mutations_operate
(UserId     UInt64,Score      UInt64,CreateTime DateTime
) engine = MergeTree()partition by toYYYYMMDD(CreateTime)order by UserId;

接下来分别插入两批不同分区的数据

insert into mutations_operate
select number,abs(number - 100),'2023-08-08 00:00:00'
from system.numbers
limit 1000000;insert into mutations_operate
select number,abs(number - 100),'2023-08-09 00:00:00'
from system.numbers
limit 1000000;

尝试删除 20230808 分区中 1000-10000 之间的所有数据,sql 如下

alter table mutations_operate delete where toYYYYMMDD(CreateTime) = 20230808 and UserId between 1000 and 10000;

可以统计一下该分区的数据条数来确认是否成功删除,从体验来说目前的数据规模感受不到 mutation 的“重”,感觉像是瞬间完成的。

当然我们也可以查看system.mutations表来监控 mutation 操作的进度

select table, mutation_id, `block_numbers.number` as num, is_done
from system.mutations;Query id: 0878a0f1-a5ff-474c-8f84-518ce5dc5e1d┌─table─────────────┬─mutation_id────┬─num─┬─is_done─┐
│ mutations_operate │ mutation_3.txt │ [3]1 │
└───────────────────┴────────────────┴─────┴─────────┘1 row in set. Elapsed: 0.002 sec.

mutation_id 是一个日志文件,可以在表存储目录中查看,完整记录了本次操作的语句和时间,例如

format version: 1
create time: 2023-08-09 18:54:06
commands: DELETE WHERE (toYYYYMMDD(CreateTime) = 20230808) AND ((UserId >= 1000) AND (UserId <= 10000))

而其中的 3 以及block_numbers.number是 mutation 号,每执行一条 delete 或 update 语句都会对应一个唯一的编号

id_done 表示本次 mutation 操作是否执行完成,1 表示已经完成

1.2 原理

为了探寻 mutation 操作的原理和执行流程重置一下表数据(删除重建即可),在插入两批数据后查看磁盘目录

» du -h0B	./detached
7.7M	./20230809_2_2_0
7.7M	./20230808_1_1_015M	.

可以看到两个分区目录均是 7.7M

尝试执行删除操作后,可以在日志中看到下面的查询信息

<Debug> delete_operate.mutations_operate (7f120927-b71e-4f85-a06c-21a94b7f89e3) (SelectExecutor): Key condition: unknown, (column 0 in [1000, +Inf)), (column 0 in (-Inf, 10000]), and, and
<Debug> delete_operate.mutations_operate (7f120927-b71e-4f85-a06c-21a94b7f89e3) (SelectExecutor): Key condition: unknown, (column 0 in [1000, +Inf)), (column 0 in (-Inf, 10000]), and, and
<Debug> delete_operate.mutations_operate (7f120927-b71e-4f85-a06c-21a94b7f89e3) (SelectExecutor): MinMax index condition: (toYYYYMMDD(column 0) in [20230808, 20230808]), unknown, unknown, and, and
<Debug> delete_operate.mutations_operate (7f120927-b71e-4f85-a06c-21a94b7f89e3) (SelectExecutor): MinMax index condition: (toYYYYMMDD(column 0) in [20230808, 20230808]), unknown, unknown, and, and
<Trace> delete_operate.mutations_operate (7f120927-b71e-4f85-a06c-21a94b7f89e3) (SelectExecutor): Running binary search on index range for part 20230808_1_1_0 (124 marks)
<Trace> delete_operate.mutations_operate (7f120927-b71e-4f85-a06c-21a94b7f89e3) (SelectExecutor): Found (LEFT) boundary mark: 0
<Debug> delete_operate.mutations_operate (7f120927-b71e-4f85-a06c-21a94b7f89e3) (SelectExecutor): Selected 0/1 parts by partition key, 0 parts by primary key, 0/0 marks by primary key, 0 marks to read from 0 ranges
<Trace> delete_operate.mutations_operate (7f120927-b71e-4f85-a06c-21a94b7f89e3) (SelectExecutor): Found (RIGHT) boundary mark: 2
<Trace> delete_operate.mutations_operate (7f120927-b71e-4f85-a06c-21a94b7f89e3) (SelectExecutor): Found continuous range in 13 steps
<Debug> delete_operate.mutations_operate (7f120927-b71e-4f85-a06c-21a94b7f89e3) (SelectExecutor): Selected 1/1 parts by partition key, 1 parts by primary key, 2/123 marks by primary key, 2 marks to read from 1 ranges
<Trace> delete_operate.mutations_operate (7f120927-b71e-4f85-a06c-21a94b7f89e3) (SelectExecutor): Spreading mark ranges among streams (default reading)
<Trace> MergeTreeInOrderSelectProcessor: Reading 1 ranges in order from part 20230808_1_1_0, approx. 16384 rows starting from 0
<Trace> Aggregator: Aggregation method: without_key
<Trace> AggregatingTransform: Aggregated. 0 to 1 rows (from 0.00 B) in 0.000570041 sec. (0.000 rows/sec., 0.00 B/sec.)
<Trace> Aggregator: Merging aggregated data
<Trace> MutateTask: Part 20230809_2_2_0 doesn't change up to mutation version 3

首先,clickhouse 会使用我们执行的删除语句中附带的 where 条件在每个分区中执行 count 查询,为了判断哪些分区有需要被删除的数据,从日志可以看出Reading 1 ranges in order from part 20230808_1_1_0, approx. 16384 rows starting from 0以及Part 20230809_2_2_0 doesn't change up to mutation version 3。注意日志中所说 20230808 的范围是 0~16384 并不是实际删除的范围,而是索引的范围。我们知道 mergeTree 引擎默认的跳数索引的间隔是 8192 而我们删除的数据范围是 1000-10000,显然作为一个整周期自然是 0-16384(2x8192)

当我们再次查看磁盘目录

» du -h0B	./detached
7.7M	./20230809_2_2_0
7.7M	./20230808_1_1_00B	./20230809_2_2_0_3
7.6M	./20230808_1_1_0_323M	.

总目录从 15M 变成了 23M,而两个分区也都各自生成了一个以 mutation version 为后缀的新分区

因此接下来的逻辑如下:

clickhouse 会创建一个 tmp_mut_ 为前缀、mutation version 为后缀的临时分区目录,例如这里的就是 tmp_mut_20230808_1_1_0_3

对于需要删除的分区,会在 tmp_mut 目录中生成全新的 .bin 和 .mrk 文件

对于无需删除的分区,clickhouse 会创建一个 tmp_clone_ 为前缀、mutation version 为后缀的临时分区目录并将原分区里面的数据以硬链接的方式拷贝过去,并修改目录名称为正确的格式

下面是执行的日志情况

<Debug> delete_operate.mutations_operate (4351d317-2cd6-4328-85fe-49d5beeff5c3): Clone part /opt/homebrew/var/lib/clickhouse/store/435/4351d317-2cd6-4328-85fe-49d5beeff5c3/20230809_2_2_0/ to /opt/homebrew/var/lib/clickhouse/store/435/4351d317-2cd6-4328-85fe-49d5beeff5c3/tmp_clone_20230809_2_2_0_3
<Trace> delete_operate.mutations_operate (4351d317-2cd6-4328-85fe-49d5beeff5c3): Renaming temporary part tmp_clone_20230809_2_2_0_3 to 20230809_2_2_0_3 with tid (1, 1, 00000000-0000-0000-0000-000000000000).
<Trace> MergedBlockOutputStream: filled checksums 20230808_1_1_0_3 (state Temporary)
<Trace> delete_operate.mutations_operate (4351d317-2cd6-4328-85fe-49d5beeff5c3): Renaming temporary part tmp_mut_20230808_1_1_0_3 to 20230808_1_1_0_3 with tid (1, 1, 00000000-0000-0000-0000-000000000000)

从磁盘目录也可以佐证这一点,首先上面的 20230809_2_2_0_3 占用空间为 0B,当然这是 mac 独有的现实方式,在其它 linux 系统不一定是这么显示,进入各个分区查看一下

wjun :: data/delete_operate/mutations_operate ‹stable› » ll 20230808_1_1_0_3
total 15632
-rw-r-----@ 1 wjun  admin    17863 Aug  9 19:36 CreateTime.bin
-rw-r-----@ 1 wjun  admin      369 Aug  9 19:36 CreateTime.cmrk2
-rw-r-----@ 1 wjun  admin  3968891 Aug  9 19:36 Score.bin
-rw-r-----@ 1 wjun  admin      409 Aug  9 19:36 Score.cmrk2
-rw-r-----@ 1 wjun  admin  3969011 Aug  9 19:36 UserId.bin
-rw-r-----@ 1 wjun  admin      409 Aug  9 19:36 UserId.cmrk2
-rw-r-----@ 1 wjun  admin      490 Aug  9 19:36 checksums.txt
-rw-r-----@ 1 wjun  admin       90 Aug  9 19:36 columns.txt
-rw-r-----@ 1 wjun  admin        6 Aug  9 19:36 count.txt
-rw-r-----@ 1 wjun  admin       10 Aug  9 19:36 default_compression_codec.txt
-rw-r-----@ 1 wjun  admin        1 Aug  9 19:36 metadata_version.txt
-rw-r-----@ 1 wjun  admin        8 Aug  9 19:36 minmax_CreateTime.idx
-rw-r-----@ 1 wjun  admin        4 Aug  9 19:36 partition.dat
-rw-r-----@ 1 wjun  admin      188 Aug  9 19:36 primary.cidx
wjun :: data/delete_operate/mutations_operate ‹stable› » ll 20230809_2_2_0_3
total 15768
-rw-r-----@ 2 wjun  admin    18042 Aug  9 19:35 CreateTime.bin
-rw-r-----@ 2 wjun  admin      375 Aug  9 19:35 CreateTime.cmrk2
-rw-r-----@ 2 wjun  admin  4004938 Aug  9 19:35 Score.bin
-rw-r-----@ 2 wjun  admin      415 Aug  9 19:35 Score.cmrk2
-rw-r-----@ 2 wjun  admin  4004915 Aug  9 19:35 UserId.bin
-rw-r-----@ 2 wjun  admin      415 Aug  9 19:35 UserId.cmrk2
-rw-r-----@ 2 wjun  admin      490 Aug  9 19:35 checksums.txt
-rw-r-----@ 2 wjun  admin       90 Aug  9 19:35 columns.txt
-rw-r-----@ 2 wjun  admin        7 Aug  9 19:35 count.txt
-rw-r-----@ 2 wjun  admin       10 Aug  9 19:35 default_compression_codec.txt
-rw-r-----@ 2 wjun  admin        8 Aug  9 19:35 minmax_CreateTime.idx
-rw-r-----@ 2 wjun  admin        4 Aug  9 19:35 partition.dat
-rw-r-----@ 2 wjun  admin      173 Aug  9 19:35 primary.cidx

20230809_2_2_0_3 分区 inode 被连接次数为 2 表示建立了硬链接。

因此 mutation 的删除逻辑如下:

  1. 每个分区执行附带删除操作的 where 条件的 count 查询,获取需要执行删除操作的分区
  2. 对于需要执行删除操作的分区会创建一个临时目录并生成全新(删除需要删除的行)的文件,随后 rename 分区
  3. 对于无需执行删除操作的分区会创建一个临时目录并以硬链接的方式拷贝文件,随后 rename 分区
  4. 原分区在system.parts中会被置为 inactive 状态
  5. 在下一次 merge 是删除原分区

而对于更新操作基本逻辑一致,需要注意的是需要执行更新操作的分区会有如下两种情况:

  1. 分区类型为 wide:只会重新生成受影响行的 bin 和 mrk 文件,不受影响的文件以硬链接的方式拷贝
  2. 分区类型为 compact:因为所有列都是一个文件,因此会重新生成 bin 和 mrk 文件

更新和删除操作流程不一致的原因是:删除影响全部列而更新只影响部分列

mergeTree 表的分区类型分为 wide 和 compact 两种受min_bytes_for_wide_partmin_rows_for_wide_part参数影响。wide 类型的分区一个列一个文件,compact 类型的分区所有列公用一个文件,当分区数据的行数和字节较小时为 compact 类型,不管是查询所有字段或某个字段相对较快;当数据量很大时就会以列式存储来追求 AP 查询性能

1.3 不足

当我们走一遍 mutation 时发现在删除任务完成后表 merge 前的这一段时间磁盘空间不减反增,这个就让用户很难接受了。因此就可能会出现因为磁盘空间不足想要删除数据,结果删除操作导致空间进一步不足的窘境。同时 mutation 会重写受影响的分区,这也是 mutation 操作重的原因所在。

二、mergeTree

对于 clickhouse 这类高性能分析型数据库而言,修改源文件是一件非常奢侈且代价昂贵的操作,相对于直接修改源文件,我们将修改和新增操作都转换为新增操作,即以增代删将是一个非常不错的选择。是不是和 Hbase 的思路十分接近。在 mergeTree 家族中有一个特殊的表引擎叫 CollapsingMergeTree,翻译过来叫折叠合并树引擎就是提供了这样的功能。它通过定义一个 sign 标记字段来记录数据行的状态。如果 sign 为 1 表示这是一行有效的数据,如果 sign 为 -1 表示这行数据被删除。当 CollapsingMergeTree 分区合并时同一分区的 +1、-1 将会被抵消,犹如一张纸折叠一般。

2.1 实操

创建 CollapsingMergeTree 表

create table collapsing_table
(Id         String,Code       Int32,CreateTime DateTime,Sign       Int8
) engine = CollapsingMergeTree(Sign)partition by toYYYYMMDD(CreateTime)order by Id;

注:和其它 mergeTree 引擎一样 CollapsingMergeTree 依然是以 order by 字段作为后续数据唯一性的依据

插入一批原始数据

insert into collapsing_table values ('A000', 100, '2023-08-09 00:00:00', 1);
insert into collapsing_table values ('A001', 100, '2023-08-09 00:00:00', 1);
insert into collapsing_table values ('A002', 100, '2023-08-09 00:00:00', 1);

修改 A000 的 Code 为 200 并删除 A002 的数据

# 修改 A000 的 Code 为 200
insert into collapsing_table values ('A000', 100, '2023-08-09 00:00:00', -1);
insert into collapsing_table values ('A000', 200, '2023-08-09 00:00:00', 1);
# 删除 A002 的数据
insert into collapsing_table values ('A002', 100, '2023-08-09 00:00:00', -1);
# 手动执行一下分区合并操作
optimize table collapsing_table final;

可以观察到数据已经被删除和修改。

CollapsingMergeTree 在分区合并折叠数据的时候,遵循下面规则

  1. 如果 sign = 1 比 sign = -1 多一行,最后保留 sign = 1 的数据
  2. 如果 sign = 1 比 sign = -1 少一行,最后保留 sign = -1 的数据
  3. 如果 sign = 1 和 sign = -1 一样多,且最后一行时 sign = 1,则保留第一行的 sign = -1 和最后一行 sign = 1
  4. 如果 sign = 1 和 sign = -1 一样多,且最后一行时 sign = -1,则什么也不保留
  5. 其余情况 clickhouse 会打印告警日志,但不会报错且查询情况不可预知

2.2 不足

当前表的数据如下

select *
from collapsing_table;Query id: 4b1da757-d02a-4b88-92e5-1fe659ca462c┌─Id───┬─Code─┬──────────CreateTime─┬─Sign─┐
│ A002 │  3002023-08-09 00:00:00-1 │
└──────┴──────┴─────────────────────┴──────┘
┌─Id───┬─Code─┬──────────CreateTime─┬─Sign─┐
│ A002 │  3002023-08-09 00:00:001 │
└──────┴──────┴─────────────────────┴──────┘
┌─Id───┬─Code─┬──────────CreateTime─┬─Sign─┐
│ A000 │  2002023-08-09 00:00:001 │
│ A001 │  1002023-08-09 00:00:001 │
└──────┴──────┴─────────────────────┴──────┘4 rows in set. Elapsed: 0.003 sec.

从操作来看 A002 是要被删除的

但是如果查询sql如下

select Id, sum(Code), count(Code), avg(Code)
from collapsing_table
group by Id;Query id: 610f6503-1344-4ba0-9564-6327277ffe95┌─Id───┬─sum(Code)─┬─count(Code)─┬─avg(Code)─┐
│ A001 │       1001100 │
│ A000 │       2001200 │
│ A002 │       6002300 │
└──────┴───────────┴─────────────┴───────────┘3 rows in set. Elapsed: 0.005 sec.

此时的结果是不对的,因此需要改写 sql

select Id, sum(Code * Sign), count(Code * Sign), avg(Code * Sign)
from collapsing_table
group by Id
having sum(Sign) > 0;Query id: a3fe84d0-33a5-4287-bd02-49ab03df1852┌─Id───┬─sum(multiply(Code, Sign))─┬─count(multiply(Code, Sign))─┬─avg(multiply(Code, Sign))─┐
│ A001 │                       1001100 │
│ A000 │                       2001200 │
└──────┴───────────────────────────┴─────────────────────────────┴───────────────────────────┘2 rows in set. Elapsed: 0.005 sec.

当然还有一种方式就是在查询数据前执行分区合并操作optimize table collapsing_table final;,但这种方式效率极低在生产中慎用

同时 CollapsingMergeTree 还存在一些问题,例如在分区合并前用户是可以看到所有数据的。当然上面所说的问题都不是最致命的,CollapsingMergeTree 最致命点在于对于 sign 的写入顺序有严格的要求,对于一个删除操作正常的顺序应该是先写入 1 再写入 -1

insert into collapsing_table values ('A002', 300, '2023-08-09 00:00:00', 1);
insert into collapsing_table values ('A002', 300, '2023-08-09 00:00:00', -1);

但如果颠倒顺序

insert into collapsing_table values ('A002', 300, '2023-08-09 00:00:00', -1);
insert into collapsing_table values ('A002', 300, '2023-08-09 00:00:00', 1);

则不会被删除。而在生产环境一旦 CollapsingMergeTree 在多线程中处理就无法保证写入顺序了。

当然幸运的是 clickhouse 也注意到 CollapsingMergeTree 的缺点并推出了新的表引擎 VersionedCollapsingMergeTree,在 CollapsingMergeTree 的基础上将按照写入顺序折叠修改为按照版本号顺序进行折叠,而版本号交由用户来管理。VersionedCollapsingMergeTree 引擎的操作就交给读者来体验,毕竟下面还有一种更贴合 TP 数据库操作的删除操作

三、lightweight

上面介绍了通过 mutation 和 mergeTree 来实现删除操作,但是 mutation 操作太重,mergeTree 则需要修改 sql 且删除操作受分区合并时机影响。从 clickhouse v22.8 开始提供了一个轻量级删除功能且语法为标准 sql 🎉🎉🎉

3.1 实操

准备表和数据

create table lightweight_operate
(UserId     UInt64,Score      UInt64,CreateTime DateTime
) engine = MergeTree()partition by toYYYYMMDD(CreateTime)order by UserId;insert into lightweight_operate
select number,abs(number - 100),'2023-08-08 00:00:00'
from system.numbers
limit 1000000;insert into lightweight_operate
select number,abs(number - 100),'2023-08-09 00:00:00'
from system.numbers
limit 1000000;

同样删除 20230808 分区中 1000-10000 之间的所有数据,sql 如下

delete from lightweight_operate where toYYYYMMDD(CreateTime) = 20230808 and UserId between 1000 and 10000;

验证一下

select count() from lightweight_operate where toYYYYMMDD(CreateTime) = 20230808;Query id: 0344da3b-5ea5-436d-ba29-cfb1a8e3420e┌─count()─┐
│  990999 │
└─────────┘1 row in set. Elapsed: 0.008 sec. Processed 1.00 million rows, 5.00 MB (128.59 million rows/s., 642.93 MB/s.)

成功删除

3.2 原理

查看磁盘目录

» ll
total 16
drwxr-x---@ 16 wjun  admin  512 Aug  9 21:09 20230808_1_1_0
drwxr-x---@ 18 wjun  admin  576 Aug  9 21:10 20230808_1_1_0_3
drwxr-x---@ 16 wjun  admin  512 Aug  9 21:09 20230809_2_2_0
drwxr-x---@ 15 wjun  admin  480 Aug  9 21:10 20230809_2_2_0_3
drwxr-x---@  2 wjun  admin   64 Aug  9 21:09 detached
-rw-r-----@  1 wjun  admin    1 Aug  9 21:09 format_version.txt
-rw-r-----@  1 wjun  admin  171 Aug  9 21:10 mutation_3.txt» du -h0B	./detached
7.7M	./20230809_2_2_0
7.7M	./20230808_1_1_00B	./20230809_2_2_0_328K	./20230808_1_1_0_315M	.

可以看出轻量删除依然是一个 mutation 操作,从system.mutations表也可以验证,但轻量删除生成的新的分区 20230808_1_1_0_3 仅 28K,那么轻量删除和 mutation 删除的区别在哪

查看 20230808_1_1_0_3 磁盘目录

wjun :: data/delete_operate/lightweight_operate ‹stable› » ll 20230808_1_1_0_3
total 15800
-rw-r-----@ 2 wjun  admin    18042 Aug  9 21:09 CreateTime.bin
-rw-r-----@ 2 wjun  admin      375 Aug  9 21:09 CreateTime.cmrk2
-rw-r-----@ 2 wjun  admin  4004938 Aug  9 21:09 Score.bin
-rw-r-----@ 2 wjun  admin      415 Aug  9 21:09 Score.cmrk2
-rw-r-----@ 2 wjun  admin  4004915 Aug  9 21:09 UserId.bin
-rw-r-----@ 2 wjun  admin      415 Aug  9 21:09 UserId.cmrk2
-rw-r-----@ 1 wjun  admin     4493 Aug  9 21:10 _row_exists.bin
-rw-r-----@ 1 wjun  admin      236 Aug  9 21:10 _row_exists.cmrk2
-rw-r-----@ 1 wjun  admin      589 Aug  9 21:10 checksums.txt
-rw-r-----@ 1 wjun  admin      110 Aug  9 21:10 columns.txt
-rw-r-----@ 2 wjun  admin        7 Aug  9 21:09 count.txt
-rw-r-----@ 1 wjun  admin       10 Aug  9 21:10 default_compression_codec.txt
-rw-r-----@ 1 wjun  admin        1 Aug  9 21:10 metadata_version.txt
-rw-r-----@ 2 wjun  admin        8 Aug  9 21:09 minmax_CreateTime.idx
-rw-r-----@ 2 wjun  admin        4 Aug  9 21:09 partition.dat
-rw-r-----@ 2 wjun  admin      173 Aug  9 21:09 primary.cidx

发现多了一组 _row_exists 文件而其余文件的 inode 连接数均为 2,也就是说轻量删除是真正的给字段添加了一个标记。

在查询的时候过滤

lightweight_deletes_v2_b891b54446

在分区合并的时候删除

lightweight_delete_merge_1_a2519ab507

比 mutation 轻的点在于轻量删除不会重构整个分区目录而是重写 _row_exists 文件这样涉及到的修改会少很多,至于分区的拷贝和不涉及删除操作的分区操作逻辑则和上面介绍的 mutation 流程一致

3.3 不足

轻量删除的设计思路相比之前的会好上很多,但 clickhouse 毕竟不是 TP 数据库,目前轻量删除依然存在一些问题和限制,如:

  1. 轻量删除是异步的,只有在分区合并的时候才会被真正删除(轻量删除执行完是逻辑上删除)
  2. 对 wide 类型分区友好,对于 compact 类型分区会产生较大的磁盘 IO
  3. 会修改分区在磁盘中的名称,可能会影响备份

对于 mutation 是否为异步操作可以通过参数进行配置,只需将mutations_sync置为 true 即可

set mutations_sync = true;

至于其它的不足需要用户结合实际场景进行取舍

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/85354.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

go语言的database/sql结合squirrel工具sql生成器完成数据库操作

database/sql database/sql是go语言内置数据库引擎&#xff0c;使用sql查询数据库&#xff0c;配置datasource后使用其数据库操作方法对数据库操作&#xff0c;如下&#xff1a; package mainimport ("database/sql""fmt"_ "github.com/Masterminds…

Cesium 1.107+ 自定义类支持 readyPromise

由于cesium 1.107 的图元(Primitive) 已经不支持 readyPromise。 但是个人感觉比较好用,于是用了一个插件来实现。 用法: // 定义图元并添加,和之前一样 const boxGreen new BoxPrimitive({color: "#ff0000" }) viewer.scene.primitives.add(boxGreen.primitive)/…

【Spring专题】Bean的声明周期流程图

前言 我向来不主张【通过源码】理解业务&#xff0c;因为每个人的能力有限&#xff0c;甚至可能会因为阅读错误导致出现理解上的偏差&#xff0c;所以我决定&#xff0c;还是先帮大家【开天眼】&#xff0c;先整体看看流程图&#xff0c;好知道&#xff0c;Spring在写源码的过…

一文讲述什么是数字孪生?

当前世界正处于百年未有之大变局&#xff0c;数字经济在各国已成为经济发展的重点。数字经济也是我国社会经济发展的必经之路。 近些年&#xff0c;大数据、人工智能、数字孪生等技术的发展促使技术与国内各产业进一步融合&#xff0c;从而推动了各产业在智能化、数字化等方面…

程序猿成长之路之密码学篇-分组密码加密模式及IV(偏移量)的详解

Cipher.getInstance("AES/ECB/PKCS5Padding"); Cipher cipher Cipher.getInstance("AES/CBC/PKCS5Padding"); 在进行加解密编程的时候应该有很多小伙伴接触过以上的语句&#xff0c;但是大伙儿在编码过程中是否了解过ECB/CBC的含义、区别以及PKCS5Padding…

10个AI绘图生成器让绘画更简单

AI不仅影响商业和医疗保健等行业&#xff0c;还在创意产业中发挥着越来越大的作用&#xff0c;开创了AI绘画生成器新时代。在绘画领域当然也是如此&#xff0c;与传统的绘画工具不同&#xff0c;AI人工智能时代的绘画工具是全自动的、智能的&#xff0c;甚至可以说是“傻瓜式”…

Three.js阴影

目录 Three.js入门 Three.js光源 Three.js阴影 Three.js纹理贴图 使用灯光后&#xff0c;场景中就会产生阴影。物体的背面确实在黑暗中&#xff0c;这称为核心阴影&#xff08;core shadow&#xff09;。我们缺少的是落下的阴影&#xff08;drop shadow&#xff09;&#…

【ultralytics仓库使用自己的数据集训练RT-DETR】

ultralytics仓库使用自己的数据集训练RT-DETR RT-DETR由百度开发&#xff0c;是一款尖端的端到端物体检测器&#xff08;基于transformer架构&#xff09;&#xff0c;在提供实时性能的同时保持高精度。它利用视觉变换器&#xff08;ViT&#xff09;的力量&#xff0c;通过解耦…

水库大坝安全监测系统实施方案

一、方案概述 水库大坝作为特殊的建筑&#xff0c;其安全性质与房屋等建筑物完全不同&#xff0c;并且建造在地质构造复杂、岩土特性不均匀的地基上&#xff0c;目前对于大坝监测多采用人工巡查的方法&#xff0c;存在一定的系统误差&#xff0c;其工作性态和安全状况随时都在变…

SSH连接阿里服务器搭建JAVA环境

SSH连接 1.IP录入 2.账户登录 3.右下角点击连接即可 安装JDK 1.查看是否存在jdk yum search jdk 2.安装JDK&#xff08;不存在时&#xff09; yum -y install java-1.8.0-openjdk* 3.安装完成 4.测试成功否 java -version 安装文件上传 yum -y install lrzsz 上传文件…

[git] git基础知识

git是一个免费的、开源的分布式版本控制系统&#xff0c;可以快速高效地处理从小型到大型的各种项目 git易于学习&#xff0c;性能极快 什么是版本控制&#xff1f; 版本控制是一种记录文件内容变化&#xff0c;以便将来查阅特定版本修订情况&#xff0c;可以记录文件修改历史…

微信开发之获取收藏夹列表的技术实现

简要描述&#xff1a; 获取收藏夹内容 请求URL&#xff1a; http://域名地址/weChatFavorites/favSync 请求方式&#xff1a; POST 请求头Headers&#xff1a; Content-Type&#xff1a;application/jsonAuthorization&#xff1a;login接口返回 参数&#xff1a; 参数…

将Linux上的cpolar内网穿透配置为开机自启动——“cpolar内网穿透”

将Linux上的cpolar内网穿透配置为开机自启动 文章目录 将Linux上的cpolar内网穿透配置为开机自启动前言一、进入命令行模式二、输入token码三、输入内网穿透命令 前言 我们将cpolar安装到了Ubuntu系统上&#xff0c;并通过web-UI界面对cpolar的功能有了初步了解。当然cpolar除…

黑马头条项目学习--Day3: 自媒体文章发布

Day3: 自媒体文章发布 Day3: 自媒体文章发布1) 素材管理-图片上传a) 前期微服务搭建b) 具体实现 2) 素材管理-图片列表a) 接口定义b) 具体实现 3) 素材管理-照片删除/收藏a) 图片删除a1) 接口定义a2) 代码实现 b) 收藏与取消b1) 接口定义b2) 代码实现 4) 文章管理-频道列表查询…

shell脚本之正则表达式

目录 一.常见的管道命令1.1sort命令1.2uniq命令1.3tr命令1.4cut命令1.5实例1.5.1统计当前主机连接状态1.5.2统计当前主机数 二.正则表达式2.1正则表达式的定义2.2常见元字符&#xff08;支持的工具&#xff1a;find&#xff0c;grep&#xff0c;egrep&#xff0c;sed和awk&…

面试总结-c++

1该吹牛逼吹牛逼。在自己能说出个所以然的情况下&#xff0c;该吹就吹&#xff0c;不吹没工作&#xff0c;吹了有希望。 比如 c组长&#xff0c;确有其事&#xff0c;但是挺唬人。说自己在北京定居也是侧面吹牛逼&#xff0c;证明自己的能力。还有媳妇在研究所。 2.对自己做过…

【论文阅读】EULER:通过可扩展时间链接预测检测网络横向移动(NDSS-2022)

作者&#xff1a;乔治华盛顿大学-Isaiah J. King、H. Howie Huang 引用&#xff1a;King I J, Huang H H. Euler: Detecting Network Lateral Movement via Scalable Temporal Graph Link Prediction [C]. Proceedings 2022 Network and Distributed System Security Symposium…

【JavaSpring】注解开发

注解开发定义bean 不指定名称 package org.example.service.impl;import org.example.dao.BookDao; import org.example.service.BookService; import org.springframework.stereotype.Component;Component public class BookServiceimpl implements BookService {private Bo…

QGIS开发五:VS使用QT插件创建UI界面

前面我们说了在创建项目时创建的是一个空项目&#xff0c;即不使用 Qt 提供的综合开发套件 Qt Creator&#xff0c;也不使用 Qt Visual Studio Tools 这类工具。 但是后面发现&#xff0c;如果我想要有更加满意的界面布局&#xff0c;还是要自己写一个UI文件&#xff0c;如果不…

pdf怎么压缩到1m?这样做压缩率高!

PDF是目前使用率比较高的一种文档格式&#xff0c;因为它具有很高的安全性&#xff0c;还易于传输等&#xff0c;但有时候当文件体积过大时&#xff0c;会给我们带来不便&#xff0c;这时候简单的解决方法就是将其压缩变小。 想要将PDF文件压缩到1M&#xff0c;也要根据具体的情…