DIP: NAS(Neural Architecture Search)论文阅读与总结(双份快乐)

文章地址:

  • NAS-DIP: Learning Deep Image Prior with Neural Architecture Search
  • Neural Architecture Search for Deep Image Prior

参考博客:https://zhuanlan.zhihu.com/p/599390720

文章目录

  • NAS-DIP: Learning Deep Image Prior with Neural Architecture Search
    • 1. 方法原理
      • 1.1 动机
      • 1.2 相关工作
      • 1.3 方法简介
    • 2. 实验结果
    • 3. 总结
  • Neural Architecture Search for Deep Image Prior
    • 1. 方法原理
      • 1.1 动机
      • 1.2 相关工作
      • 1.3 方法细节
    • 2. 实验结果
    • 3. 总结

NAS-DIP: Learning Deep Image Prior with Neural Architecture Search

1. 方法原理

1.1 动机

动机

  • 基于Deep Image Prior的各种应用都有了很好的效果,但是在当时对于DIP的原理、调优都没有非常好的解释
  • 不同的网络结构对于DIP收敛效率和恢复效果有一定的影响,选择合适的网络结构可能会对DIP的发展有参考意义

贡献

  • 基于几种常用的上采样算子提出了一种分解方法,使能够为每项任务搜索合适的上采样单元。
  • 提出了一种Skip connection构建的搜索方法

1.2 相关工作

上采样:将提取到的高层特征进行放大,此时就需要对feature map进行上采样

常见的方法有:

  • 近邻插值(nearest interpolation)
  • 双线性插值(bilinear interpolation)
  • 双三次插值(Bicubic interpolation)
  • 反卷积(Transposed Convolution)
  • 反池化(Unpooling)。

每种方法具体的操作参考 https://zhuanlan.zhihu.com/p/337745762, 转置卷积很有意思,后续的工作也会用到(其可以自定义卷积核)

由于不同的任务需要的网络结构不同,所以本文的一个核心点就是利用强化学习循环神经网络提供了一种搜索最优网络结构的方法。


NAS: network architecture search

给定想要搜索的网络结构:这里是upsamping和skip connection的可能结构空间,然后使用强化学习等搜索方法获取一个合适的网络结构。这样设计的最大的一个目的是为了自适应DIP各种不同的任务,因为作者认为DIP用于去噪、超分、去雾等工作需要的网络结构是不同的。换一句话说当时的工作认为网络结构对DIP的影响很大


1.3 方法简介

NAS-DIP就是用了一个RNN controller 强化学习模块搜索最合适的DIP网络架构:

提供的两个网络模块搜索空间是

  • Upsampling方法和大小

    • 在这里插入图片描述
  • Upsampling 分解和权重共享

    • 在这里插入图片描述
  • Skip connnection

    • 在这里插入图片描述

2. 实验结果

消融实验

  • 网络结构确实是对DIP有影响,且使用NAS-DIP能够提升效果:
    • 在这里插入图片描述

各种应用

  • 超分辨率

    • 在这里插入图片描述
  • 去噪:感觉有些问题,过拟合了,拟合了一些噪声

    • 在这里插入图片描述
  • 去雾:

    • 在这里插入图片描述

3. 总结

总结

  • 网络结构对传统DIP的效果有影响,搜索一个合适的网络结构可能对网络效果有很大的影响
  • 定性分析 上采样结构、skip connection结构对DIP的影响很大,设置了搜索空间(包括upsampling方法、结构和skip connection结构等)
  • 提出了一种基于强化学习的网络结构搜索方法

问题

  • 搜索合适网络结构的时间消耗实在是离谱:NVIDIA V100 GPU with 12GB memory
    • super-resolution task takes about 3 days
    • denoising about 3 days
    • inpainting about 5 days.
  • 个人感觉效果的提升没有可以消除这么长时间和资源消耗的问题。(trade off)
  • 除了upsampling 和 skip connection是否还有其他结构影响更大,很难进行一个全面的分析,也没有提出一个非常优秀的结构出来。

Neural Architecture Search for Deep Image Prior

1. 方法原理

1.1 动机

动机

  • DIP的效果依赖于CNN的网络结构(前期定性分析得到的实验结论,后续分析有其他结论)
  • 不同的CNN网络结构参数不同,效果不同,如何选择最佳的DIP网络结构
  • GANs领域中的见解是:网络结构的Decoder对生成模型的影响非常大

贡献

  • 使用遗传算法搜索最佳的网络结构

1.2 相关工作

前一节中叙述,主要是一些关于NAS的发展:强化学习、全局搜索方法

1.3 方法细节

也咩什么细节,就是使用遗传算法搜索最合适的网络结构,需要搜索的包括:

  • Encoder的某一层是否用到
  • Encoder卷积核大小
  • Encoder卷积核数量
  • Decoder的某一层是否用到
  • Decoder卷积核大小
  • Decoder卷积核数量
  • skip connection是否打开

在这里插入图片描述

在这里插入图片描述

2. 实验结果

应用场景

  • 破损修复,因为这里搜索了很多不同的网络结构,所以有很多输出结果

    • 在这里插入图片描述
  • 各种场景:在各种场景中都有一定的提升,也说明了搜索合适的网络结构可能可以提升DIP的效果

    • 在这里插入图片描述

3. 总结

小结

  • 使用遗传算法搜索最佳的网络结构

问题

  • 可以给出可视化的网络结构,但是没有说明到底什么样的结构对DIP有很大的影响只是对比说了对称网络效果比非对称网络结构好
  • 时间消耗
    • 每个结构搜索20-30次迭代需要 2-3分钟
    • 16 Nvidia Titan-X GPUs搜索一次结构需要3-6小时
  • 是否真的是最优秀的结构?
    • 每个结构只搜索了20-30次迭代,对于DIP而言往往是不够的

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/86503.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

设计模式-单例模式

1、概念 创建型模式 确保一个类在任何情况下都绝对只有一个实例,并且提供一个全局访问点。 2、模式 1)饿汉式单例模式 在类加载的时候就立即初始化,并且创建单例对象。 绝对线程安全,在线程还没出现以前就实例化了&#xff0…

[保研/考研机试] KY3 约数的个数 清华大学复试上机题 C++实现

题目链接&#xff1a; KY3 约数的个数 https://www.nowcoder.com/share/jump/437195121691716950188 描述 输入n个整数,依次输出每个数的约数的个数 输入描述&#xff1a; 输入的第一行为N&#xff0c;即数组的个数(N<1000) 接下来的1行包括N个整数&#xff0c;其中每个…

Arcgis将一个shp依照属性表导出为多个shp

# -*- coding:utf-8 -*-import arcpy import osfrom arcpy import env#env.workspace "./" #自己设置路径shp rC:\Users\Administrator\Desktop\Lake\xxx.shp #shp文件路径outpath r"C:\Users\Administrator\Desktop\Lake\fenli" #输出结果路径with arc…

根据源码,模拟实现 RabbitMQ - 从需求分析到实现核心类(1)

目录 一、需求分析 1.1、对 Message Queue 的认识 1.2、消息队列核心概念 1.3、Broker Server 内部关键概念 1.4、Broker Server 核心 API &#xff08;重点实现&#xff09; 1.5、交换机类型 Direct 直接交换机 Fanout 扇出交换机 Topic 主题交换机 1.6、持久化 1.7…

【脚踢数据结构】队列(顺序和链式)

(꒪ꇴ꒪ )&#xff0c;Hello我是祐言QAQ我的博客主页&#xff1a;C/C语言,Linux基础,ARM开发板&#xff0c;软件配置等领域博主&#x1f30d;快上&#x1f698;&#xff0c;一起学习&#xff0c;让我们成为一个强大的攻城狮&#xff01;送给自己和读者的一句鸡汤&#x1f914;&…

通过OpenTelemetry上报Python-flask应用数据(阿里云)

参考文档 https://help.aliyun.com/document_detail/611711.html?spma2c4g.90499.0.0.34a056ddTu2WWq 先按照 方法一&#xff1a;手动埋点上报Python应用数据 步骤测试上报是否正常。 flas 上报 在 手动埋点上报Python应用数据 的基础上&#xff0c;上报flask应用的数据&#…

云计算-知识点大纲

前言&#xff1a;云计算的基本概念学习&#xff0c;基础知识大纲梳理。 目录 云计算的概念 云计算的特征 部署模式 服务模式 云计算的发展 云计算的核心技术 虚拟化技术 常见的虚拟化技术 服务器虚拟化 裸金属型技术 服务器虚拟化技术的特点 存储虚拟化 CPU 内存…

31 | 独角兽企业数据分析

独角兽企业:是投资行业尤其是风险投资业的术语,一般指成立时间不超过10年、估值超过10亿美元的未上市创业公司。 项目目的: 1.通过对独角兽企业进行全面地分析(地域,投资方,年份,行业等),便于做商业上的战略决策 项目数据源介绍 1.数据源:本项目采用的数据源是近…

机器学习鱼书笔记(自用更新)

零、预知识 1.Numpy 使用 介绍&#xff1a;高效的操作多维数组的函数库。 安装&#xff1a;&#xff08;前提已经安装了python&#xff09; pip install numpy导入 import numpy as np创建数组 Numpy最重要的数据结构是多维数组&#xff08;ndarray&#xff09;。通过Numpy&…

【Go语言】Golang保姆级入门教程 Go初学者chapter2

【Go语言】变量 VSCode插件 setting的首选项 一个程序就是一个世界 变量是程序的基本组成单位 变量的使用步骤 [外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-zuxG8imp-1691479164956)(https://cdn.staticaly.com/gh/hudiework/imgmain/image-20…

解决MySQL与Redis缓存一致性的问题

背景 考试系统中&#xff0c;教师会在后台发布一场考试&#xff0c;考试会存储在MySQL和Redis里面&#xff0c;考试有时候是会出错的&#xff0c;我们需要后台修改&#xff0c;如果多个教师在后台并发修改&#xff08;概率不大&#xff09;&#xff0c;可能会出现数据库缓存不…

Linux shell yes命令(不停输出换行的y)(不停输出换行的指定字符串)(脚本自动确认y)

文章目录 yes命令功能doc文档英文中文翻译完整文档 示例应用案例自动为脚本多次确认y yes命令功能 yes命令可以不断地输出换行的指定字符串&#xff0c;不加参数时&#xff0c;不断输出换行的“y”&#xff0c;有时我们需要执行一些需要用户键入“y”确认的脚本&#xff0c;但…

Mysql中如果建立了索引,索引所占的空间随着数据量增长而变大,这样无论写入还是查询,性能都会有所下降,怎么处理?

索引所占空间的增长确实会对MySQL数据库的写入性能和查询性能造成影响&#xff0c;这主要是由于索引数据过多时会导致磁盘I/O操作变得非常频繁&#xff0c;从而使性能下降。为此&#xff0c;可以采取以下几种方式来减缓这种影响&#xff1a; 1. 限制索引的大小&#xff1a;可以…

Oracle-创建PDB

Oracle-创建PDB 创建PDB的方式 从PDB$SEED新建PDB克隆已存在的PDB 本地PDB克隆到同一个CDB中将远程PDB克隆到CDB中将非CDB插入或克隆到CDB中通过插拔的方式创建PDB sql 命令语法 条件 CDB必须open并且read write模式连接CDB$ROOT 用户并且具有CREATEPLUGGABLEDATABASE系统权…

Linux 使用gdb调试C程序

一、gdb的一些基础命令 l&#xff1a;显示代码 l n&#xff1a;跳转到当前代码页的第n行的代码 l filename.c &#xff1a;n&#xff1a;跳转到filename.c文件的第n行代码 b 行号&#xff1a;加断点 info break&#xff1a;查看断点信息 delete 断点编号&#xff1a;删除断点 …

IoTDB原理剖析

一、介绍 IoTDB&#xff08;物联网数据库&#xff09;是一体化收集、存储、管理与分析物联网时序数据的软件系统。 Apache IoTDB采用轻量式架构&#xff0c;具有高性能和丰富的功能。 IoTDB从存储上对时间序列进行排序&#xff0c;索引和chunk块存储&#xff0c;大大的提升时序…

Python爬虫如何更换ip防封

作为一名长期扎根在爬虫行业动态ip解决方案的技术员&#xff0c;我发现很多人常常在使用Python爬虫时遇到一个困扰&#xff0c;那就是如何更换IP地址。别担心&#xff0c;今天我就来教你如何在Python爬虫中更换IP&#xff0c;让你的爬虫不再受到IP封锁的困扰。废话不多说&#…

linux安装wkhtmltopdf(清晰明了)

概述 在公司项目中使用到 wkhtmltopdf 转换PDF&#xff0c;由于 wkhtmltox-0.12.5 版本 echarts 图形虚线样式&#xff0c;需要升级 wkhtmltox-0.12.6 版本来解决。 官网地址 wkhtmltopdf &#xff1a;https://wkhtmltopdf.org/ windows 安装 下载流程及安装流程 进入官…

gazebo 导入从blender导出的dae等文件

背景&#xff1a; gazebo 模型库里的模型在我需要完成的任务中不够用&#xff0c;还是得从 solidworks、3DMax, blender这种建模软件里面在手动画一些&#xff0c;或者去他们的库里面在挖一挖。 目录 1 blender 1-1 blender 相关links 1-2 install 2 gazebo导入模型 2-1 g…

开封Geotrust单域名https证书推荐

Geotrust作为全球领先的数字证书颁发机构之一&#xff0c;拥有多年的数字证书颁发经验&#xff0c;其数字证书被广泛应用于电子商务、在线支付、企业通讯、云计算等领域&#xff0c;为用户提供了安全可靠的保障。而Geotrust旗下的单域名https证书是大多数客户创建网站时的选择之…