实现B-树

一、概述

1.历史

B树(B-Tree)结构是一种高效存储和查询数据的方法,它的历史可以追溯到1970年代早期。B树的发明人Rudolf Bayer和Edward M. McCreight分别发表了一篇论文介绍了B树。这篇论文是1972年发表于《ACM Transactions on Database Systems》中的,题目为"Organization and Maintenance of Large Ordered Indexes"。

这篇论文提出了一种能够高效地维护大型有序索引的方法,这种方法的主要思想是将每个节点扩展成多个子节点,以减少查找所需的次数。B树结构非常适合应用于磁盘等大型存储器的高效操作,被广泛应用于关系数据库和文件系统中。

B树结构有很多变种和升级版,例如B+树,B*树和SB树等。这些变种和升级版本都基于B树的核心思想,通过调整B树的参数和结构,提高了B树在不同场景下的性能表现。

总的来说,B树结构是一个非常重要的数据结构,为高效存储和查询大量数据提供了可靠的方法。它的历史可以追溯到上个世纪70年代,而且在今天仍然被广泛应用于各种场景。

2.B-树的优势

B树和AVL树、红黑树相比,B树更适合磁盘的增删改查,而AVL和红黑树更适合内存的增删改查。

假设存储100万的数据:

  • 使用AVL来存储,树高为: l o g 2 1000000 ≈ 20 log_21000000≈20 log2100000020 (20次的磁盘IO很慢,但是20次的内存操作很快)
  • 使用B-树存储,最小度数为500,树高为:3

B树优势:

  • 磁盘存储比内存存储慢很多,尤其是访问磁盘的延迟相对较高。每次访问磁盘都需要消耗更多的时间,而B树的设计可以最大化地减少对磁盘的访问次数。
  • 磁盘访问一般是按块读取的,而B树的节点通常设计为与磁盘块大小一致。由于B树是多路的,单次磁盘访问通常会加载多个数据项,而不是像AVL树和红黑树那样每次只读取一个节点。
  • 在磁盘中存储B树时,操作系统通常会将树的部分结构加载到内存中以便快速查询,避免了频繁的磁盘访问。
  • 在数据库和文件系统中,数据通常是大规模的,存储在外部存储介质上。B树特别适合大规模数据的增删改查,因为它减少了不必要的磁盘访问,能够高效地执行复杂的数据操作。

二、特性

1.度和阶

  • 度(degree):节点的孩子数
  • 阶(order):所有节点孩子最大值

2.特性

  • 每个节点具有

    • 属性 n,表示节点中 key 的个数
    • 属性 leaf,表示节点是否是叶子节点
    • 节点 key 可以有多个,以升序存储
  • 每个非叶子节点中的孩子数是 n + 1、叶子节点没有孩子

  • 最小度数t(节点的孩子数称为度)和节点中键数量的关系如下:

最小度数t键数量范围
21 ~ 3
32 ~ 5
43 ~ 7
n(n-1) ~ (2n-1)

其中,当节点中键数量达到其最大值时,即 3、5、7 … 2n-1,需要分裂

  • 叶子节点的深度都相同

三、实现

1.定义节点类

static class Node {// 关键字int[] keys;// 关键字数量int keyNum;// 孩子节点Node[] children;// 是否是叶子节点boolean leafFlag = true;// 最小度数:最少孩子数(决定树的高度,度数越大,高度越小)int t;// ≥2public Node(int t) {this.t = t;// 最多的孩子数(约定)this.children = new Node[2 * t];this.keys = new int[2 * t -1];}
}
1.1 节点类相关方法

查找key:查找目标22,在当前节点的关键字数组中依次查找,找到了返回;没找到则从孩子节点找:

  • 当前节点是叶子节点:目标不存在
  • 非叶子结点:当key循环到25,大于目标22,此时从索引4对应的孩子key数组中继续查找,依次递归,直到找到为止。
    在这里插入图片描述

根据key获取节点

/*** 根据key获取节点* @param key* @return*/
Node get(int key) {// 先从当前key数组中找int i = 0;while (i < keyNum) {if (keys[i] == key) {// 在当前的keys关键字数组中找到了return this;}if (keys[i] > key) {// 当数组比当前key大还未找到时,退出循环break;}i++;}// 如果是叶子节点,没有孩子了,说明key不存在if (leafFlag) {return null;} else {// 非叶子节点,退出时i的值就是对应范围的孩子节点数组的索引,从对应的这个孩子数组中继续找return children[i].get(key);}
}

向指定索引插入key

/*** 向keys数组中指定的索引位置插入key* @param key* @param index*/
void insertKey(int key,int index) {/*** [0,1,2,3]* src:源数组* srcPos:起始索引* dest:目标数组* destPos: 目标索引* length:拷贝的长度*/System.arraycopy(keys, index, keys, index + 1, keyNum - index);keys[index] = key;keyNum++;
}

向指定索引插入child

/*** 向children指定索引插入child** @param child* @param index*/
void insertChild(Node child, int index) {System.arraycopy(children, index, children, index + 1, keyNum - index);children[index] = child;
}

2.定义树

public class BTree {// 根节点private Node root;// 树中节点最小度数int t;// 最小key数量 在创建树的时候就指定好final int MIN_KEY_NUM;// 最大key数量final int MAX_KEY_NUM;public BTree() {// 默认度数设置为2this(2);}public BTree(int t) {this.t = t;root = new Node(t);MIN_KEY_NUM = t - 1;MAX_KEY_NUM = 2 * t - 1;}
}    

判断key在树中是否存在

/*** 判断key在树中是否存在* @param key* @return*/
public boolean contains(int key) {return root.get(key) != null;
}

3.新增key:

  • 1.查找插入位置:从根节点开始,沿着树向下查找,直到找到一个叶子节点,这个叶子节点包含的键值范围覆盖了要插入的键值。
  • 2.插入键值:在找到的叶子节点中插入新的键值。如果叶子节点中的键值数量没有超过B树的阶数(即每个节点最多可以包含的键值数量),则插入操作完成。
  • 3.分裂节点:如果叶子节点中的键值数量超过了B树的阶数,那么这个节点需要分裂。

如果度为3,最大key数量为:2*3-1=5,当插入了8后,此时达到了最大数量5,需要分裂:
叶子节点分裂

分裂逻辑:
分裂节点数据一分为三:

  • 左侧数据:本身左侧的数据留在该节点
  • 中间数据:中间索引2(度-1)的数据6移动到父节点的索引1(被分裂节点的索引)处
  • 右侧数据:从索引3(度)开始的数据,移动到新节点,新节点的索引值为分裂节点的index+1

如果分裂的节点是非叶子节点:
需要多一步操作:右侧数据需要和孩子一起连带到新节点去:
非叶子节点分裂
分裂的是根节点:
需要再创建多一个节点来当做根节点,此根节点为父亲,存入中间的数据。
其他步骤同上。
根节点分裂
分裂方法:

/*** 节点分裂* 左侧数据:本身左侧的数据留在该节点* 中间数据:中间索引2(度-1)的数据6移动到父节点的索引1(被分裂节点的索引)处* 右侧数据:从索引3(度)开始的数据,移动到新节点,新节点的索引值为分裂节点的index+1* @param node 要分裂的节点* @param index 分裂节点的索引* @param parent 要分裂节点的父节点**/
public void split(Node node, int index, Node parent) {// 没有父节点,当前node为根节点if (parent == null) {// 创建出新的根来存储中间数据Node newRoot = new Node(t);newRoot.leafFlag = false;newRoot.insertChild(node, 0);// 更新根节点为新创建的newRootthis.root = newRoot;parent = newRoot;}// 1.处理右侧数据:创建新节点存储右侧数据Node newNode = new Node(t);// 新创建的节点跟原本分裂节点同级newNode.leafFlag = node.leafFlag;// 新创建节点的数据从 原本节点【度】位置索引开始拷贝 拷贝长度:t-1System.arraycopy(node.keys, t, newNode.keys, 0, t - 1);// 如果node不是叶子节点,还需要把node的一部分孩子也同时拷贝到新节点的孩子中if (!node.leafFlag) {System.arraycopy(node.children, t, newNode.children, 0, t);}// 更新新节点的keyNumnewNode.keyNum = t - 1;// 更新原本节点的keyNumnode.keyNum = t - 1;// 2.处理中间数据:【度-1】索引处的数据 移动到父节点【分裂节点的索引】索引处// 要插入父节点的数据:int midKey = node.keys[t - 1];parent.insertKey(midKey, index);// 3. 新创建的节点作为父亲的孩子parent.insertChild(newNode, index + 1);// parent的keyNum在对应的方法中已经更新了
}

新增key:

/*** 新增key** @param key*/
public void put(int key) {doPut(root, key, 0, null);
}/*** 执行新增key* 1.查找插入位置:从根节点开始,沿着树向下查找,直到找到一个叶子节点,这个叶子节点包含的键值范围覆盖了要插入的键值。* 2.插入键值:在找到的叶子节点中插入新的键值。如果叶子节点中的键值数量没有超过B树的阶数(即每个节点最多可以包含的键值数量),则插入操作完成。* 3.分裂节点:如果叶子节点中的键值数量超过了B树的阶数,那么这个节点需要分裂。* @param node 待插入元素的节点* @param key 插入的key* @param nodeIndex  待插入元素节点的索引* @param nodeParent 待插入节点的父节点*/
public void doPut(Node node, int key, int nodeIndex, Node nodeParent) {// 查找插入位置int index = 0;while (index < node.keyNum) {if (node.keys[index] == key ) {// 找到了 做更新操作 (因为没有维护value,所以就不用处理了)return;}if (node.keys[index] > key) {// 没找到该key, 退出循环,index的值就是要插入的位置break;}index++;}// 如果是叶子节点,直接插入if (node.leafFlag) {node.insertKey(key, index);} else {// 非叶子节点,继续从孩子中找到插入位置 父亲的这个待插入的index正好就是元素要插入的第x个孩子的位置doPut(node.children[index], key , index, node);}// 处理节点分裂逻辑 : keyNum数量达到上限,节点分裂if (node.keyNum == MAX_KEY_NUM) {split(node, nodeIndex, nodeParent);}
}

4.删除key

情况一:删除的是叶子节点的key

节点是叶子节点,找到了直接删除,没找到返回。

情况二:删除的是非叶子节点的key

没有找到key,继续在孩子中找。
找到了,把要删除的key和替换为后继key,删掉后继key。

平衡树:该key被删除后,key数目<key下限(t-1),树不平衡,需要调整
  • 如果左边兄弟节点的key是富裕的,可以直接找他借:右旋,把父亲一个节点的旋转下来(在父亲中找到失衡节点的前驱节点),把兄弟的一个节点旋转上去(旋转上去的是兄弟中最大的key)。
    在这里插入图片描述
  • 如果右边兄弟节点的key是富裕的,可以直接找他借:左旋,把父亲的旋转下来,把兄弟的旋转上去。在这里插入图片描述
  • 当没有兄弟是富裕时,没办法借,采用向左合并:父亲和失衡节点都合并到左侧的节点中。
    在这里插入图片描述

右旋详细流程
旋转
处理孩子:
处理孩子

向左合并详细流程
在这里插入图片描述
根节点调整的情况
在这里插入图片描述

调整平衡代码:

/*** 树的平衡* @param node 失衡节点* @param index 失衡节点索引* @param parent 失衡节点父节点*/
public void balance(Node node, int index, Node parent) {if (node == root) {// 如果是根节点 当调整到根节点只剩下一个key时,要替换根节点 (根节点不能为null,要保证右孩子才替换)if (root.keyNum == 0 && root.children[0] != null) {root = root.children[0];}return;}// 拿到该节点的左右兄弟,判断节点是不是富裕的,如果富裕,则找兄弟借Node leftBrother = parent.childLeftBrother(index);Node rightBrother = parent.childRightBrother(index);// 左边的兄弟富裕:右旋if (leftBrother != null && leftBrother.keyNum > MIN_KEY_NUM) {// 1.要旋转下来的key:父节点中【失衡节点索引-1】的key:parent.keys[index-1];插入到失衡节点索引0位置// (这里父亲节点旋转走的不用删除,因为等会左侧的兄弟旋转上来会覆盖掉)node.insertKey(parent.keys[index - 1], 0);// 2.0 如果左侧节点不是叶子节点,有孩子,当旋转一个时,只需要留下原本孩子数-1 ,把最大的孩子过继给失衡节点的最小索引处(先处理后事)if (!leftBrother.leafFlag) {node.insertChild(leftBrother.removeRightMostChild(), 0);}// 2.1 要旋转上去的key:左侧兄弟最大的索引key,删除掉,插入到父节点中【失衡节点索引-1】位置(此位置就是刚才在父节点旋转走的key的位置)// 这里要直接覆盖,不能调插入方法,因为这个是当初旋转下去的key。parent.keys[index - 1] = leftBrother.removeRightMostKey();return;}// 右边的兄弟富裕:左旋if (rightBrother != null && rightBrother.keyNum > MIN_KEY_NUM) {// 1.要旋转下来的key:父节点中【失衡节点索引】的key:parent.keys[index];插入到失衡节点索引最大位置keyNum位置// (这里父亲节点旋转走的不用删除,因为等会右侧的兄弟旋转上来会覆盖掉)node.insertKey(parent.keys[index], node.keyNum);// 2.0 如果右侧节点不是叶子节点,有孩子,当旋转一个时,只需要留下原本孩子数-1 ,把最小的孩子过继给失衡节点的最大索引处(孩子节点的索引比父亲要多1)if (!rightBrother.leafFlag) {node.insertChild(rightBrother.removeLeftMostChild(), node.keyNum + 1);}// 2.1 要旋转上去的key:右侧兄弟最小的索引key,删除掉,插入到父节点中【失衡节点索引-1】位置(此位置就是刚才在父节点旋转走的key的位置)// 这里要直接覆盖,不能调插入方法,因为这个是当初旋转下去的key。parent.keys[index] = rightBrother.removeLeftMostKey();return;}// 左右兄弟都不够,往左合并if (leftBrother != null) {// 向左兄弟合并// 1.把失衡节点从父亲中移除parent.removeChild(index);// 2.插入父节点的key到左兄弟 将父节点中【失衡节点索引-1】的key移动到左侧leftBrother.insertKey(parent.removeKey(index - 1), leftBrother.keyNum);// 3.插入失衡节点的key及其孩子到左兄弟node.moveToTarget(leftBrother);} else {// 右兄弟向自己合并// 1.把右兄弟从父亲中移除parent.removeChild(index + 1);// 2.把父亲的【失衡节点索引】 处的key移动到自己这里node.insertKey(parent.removeKey(index), node.keyNum);// 3.把右兄弟完整移动到自己这里rightBrother.moveToTarget(node);}
}

删除key:

/*** 删除指定key* @param node 查找待删除key的起点* @param parent 待删除key的父亲* @param nodeIndex 待删除的key的索引* @param key 待删除的key*/
public void doRemove(Node node, Node parent, int nodeIndex, int key) {// 找到被删除的keyint index = 0;// 循环查找待删除的keywhile (index < node.keyNum) {if (node.keys[index] >= key) {//找到了或者没找到break;}index++;}// 如果找到了 index就是要删除的key索引;// 如果没找到,index就是要在children的index索引位置继续找// 一、是叶子节点if (node.leafFlag) {// 1.1 没找到if (!found(node, key, index)) {return;}// 1.2 找到了else {// 删除当前节点index处的keynode.removeKey(index);}}// 二、不是叶子节点else {// 1.1 没找到if (!found(node, key, index)) {// 继续在孩子中找 查找的孩子的索引就是当前indexdoRemove(node.children[index], node, index, key);}// 1.2 找到了else {// 找到后继节点,把后继节点复制给当前的key,然后删除后继节点。// 在索引+1的孩子里开始,一直往左找,直到节点是叶子节点为止,就找到了后继节点Node deletedSuccessor = node.children[index + 1];while (!deletedSuccessor.leafFlag) {// 更新为最左侧的孩子deletedSuccessor = deletedSuccessor.children[0];}// 1.2.1 当找到叶子节点之后,最左侧的key就是后继keyint deletedSuccessorKey = deletedSuccessor.keys[0];// 1.2.2 把后继key赋值给待删除的keynode.keys[index] = deletedSuccessorKey;// 1.2.3 删除后继key 再调用该方法,走到情况一,删除掉该后继key: 起点为索引+1的孩子处,删除掉后继keydoRemove(node.children[index + 1], node, index + 1, deletedSuccessorKey);}}// 树的平衡:if (node.keyNum < MIN_KEY_NUM) {balance(node, nodeIndex, parent);}
}

节点相关方法:

        /*** 移除指定索引处的key* @param index* @return*/int removeKey(int index) {int deleted = keys[index];System.arraycopy(keys, index + 1, keys, index, --keyNum - index);return deleted;}/*** 移除最左索引处的key* @return*/int removeLeftMostKey(){return removeKey(0);}/*** 移除最右边索引处的key* @return*/int removeRightMostKey() {return removeKey(keyNum - 1);}/*** 移除指定索引处的child* @param index* @return*/Node removeChild(int index) {Node deleted = children[index];System.arraycopy(children, index + 1, children, index, keyNum - index);children[keyNum] = null;return deleted;}/*** 移除最左边的child* @return*/Node removeLeftMostChild() {return removeChild(0);}/*** 移除最右边的child* @return*/Node removeRightMostChild() {return removeChild(keyNum);}/*** 获取指定children处左边的兄弟* @param index* @return*/Node childLeftBrother(int index) {return index > 0 ? children[index - 1] : null;}/*** 获取指定children处右边的兄弟* @param index* @return*/Node childRightBrother(int index) {return index == keyNum ? null : children[index + 1];}/*** 复制当前节点到目标节点(key和child)* @param target*/void moveToTarget(Node target) {int start = target.keyNum;// 当前节点不是叶子节点 说明有孩子if (!leafFlag) {// 复制当前节点的孩子到目标节点的孩子中for (int i = 0; i <= keyNum; i++) {target.children[start + i] = children[i];}}// 复制key到目标节点的keys中for (int i = 0; i < keyNum; i++) {target.keys[target.keyNum++] = keys[i];}}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/8721.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Fort Firewall:全方位守护网络安全

Fort Firewall是一款专为 Windows 操作系统设计的开源防火墙工具&#xff0c;旨在为用户提供全面的网络安全保护。它基于 Windows 过滤平台&#xff08;WFP&#xff09;&#xff0c;能够与系统无缝集成&#xff0c;确保高效的网络流量管理和安全防护。该软件支持实时监控网络流…

OpenCV:图像处理中的低通滤波

目录 简述 什么是低通滤波&#xff1f; 各种滤波器简介与实现 方盒滤波 均值滤波 中值滤波 高斯滤波 双边滤波 各种滤波的对比与应用场景 相关阅读 OpenCV基础&#xff1a;图像变换-CSDN博客 OpenCV&#xff1a;图像滤波、卷积与卷积核-CSDN博客 简述 低通滤波是一…

某公交管理系统简易逻辑漏洞+SQL注入挖掘

视频教程在我主页简介或专栏里 目录: 某公交管理系统挖掘 SQL注入漏洞 越权漏洞 某公交管理系统挖掘 SQL注入漏洞 前台通过给的账号密码,进去 按顺序依次点击1、2、3走一遍功能点&#xff0c;然后开启抓包点击4 当点击上图的4步骤按钮时&#xff0c;会抓到图下数据包&a…

【数据结构】_链表经典算法OJ:分割链表(力扣—中等)

目录 1. 题目描述及链接 2. 解题思路 2.1 思路1 2.2 思路2 2.3 思路3&#xff08;本题采取该解法&#xff09; 3. 题解程序 1. 题目描述及链接 题目链接&#xff1a;面试题 02.04. 分割链表 - 力扣&#xff08;LeetCode&#xff09; 题目描述&#xff1a; 给你一个链表…

工业相机 SDK 二次开发-VC6.0 程序示例

本文主要介绍了使用工业相机SDK(Software Development Kit)开发C程序方法及过 程。在 SDK 开发包目录下&#xff0c;提供了 13 个 VC6.0 示例程序&#xff0c;其中 MFC 程序 5 个&#xff0c;分别为 BasicDemo、ReconnectDemo、SetIODemo、ForceIpDemo、MultipleCamera&#xf…

选择困难?直接生成pynput快捷键字符串

from pynput import keyboard# 文档&#xff1a;https://pynput.readthedocs.io/en/latest/keyboard.html#monitoring-the-keyboard # 博客(pynput相关源码)&#xff1a;https://blog.csdn.net/qq_39124701/article/details/145230331 # 虚拟键码(十六进制)&#xff1a;https:/…

初阶1 入门

本章重点 C的关键字命名空间C的输入输出缺省参数函数重载引用内联函数auto关键字基于范围的for循环指针的空值nullptr 1.C的关键字 c总共有63个关键字&#xff0c;其中包含c语言的32个 这些关键字不需要特意去记&#xff0c;在我们日后写代码的过程中会慢慢用到并记住。 2.…

以太网详解(六)OSI 七层模型

文章目录 OSI : Open System Interconnect&#xff08;Reference Model&#xff09;第七层&#xff1a;应用层&#xff08;Application&#xff09;第六层&#xff1a;表示层&#xff08;Presentation&#xff09;第五层&#xff1a;会话层&#xff08;Session&#xff09;第四…

【Python】 python实现我的世界(Minecraft)计算器(重制版)

【Python】 python实现我的世界(Minecraft)计算器 文章目录 【Python】 python实现我的世界(Minecraft)计算器1.引言与原理2.写代码之前的配置1.BuidTools.jar文件配置服务器2.raspberryjuice-1.12.1.jar用python控制服务器 3.第三方库mcpi的基本方法4.计算器构建的思路5.源码展…

STM32使用VScode开发

文章目录 Makefile形式创建项目新建stm项目下载stm32cubemx新建项目IED makefile保存到本地arm gcc是编译的工具链G++配置编译Cmake +vscode +MSYS2方式bilibiliMSYS2 统一环境配置mingw32-make -> makewindows环境变量Cmake CmakeListnijia 编译输出elfCMAKE_GENERATOR查询…

uni-app 程序打包 Android apk、安卓夜神模拟器调试运行

1、打包思路 云端打包方案&#xff08;每天免费次数限制5&#xff0c;最简单&#xff0c;可以先打包尝试一下你的程序打包后是否能用&#xff09;&#xff1a; HBuilderX 发行App-Android云打包 选择Android、使用云端证书、快速安心打包本地打包&#xff1a; HBuilderX …

Hugging Face 推出最小体积多模态模型,浏览器运行成为现实!

1. SmolVLM 模型家族简介 1.1 什么是 SmolVLM-256M 和 SmolVLM-500M,它们为何如此重要? 在人工智能的多模态模型领域,如何在有限的计算资源下实现强大性能一直是一个重要的挑战。SmolVLM-256M 和 SmolVLM-500M 是最近推出的两款视觉语言模型,它们不仅突破了传统“大模型”…

速通Docker === Docker Compose

目录 Docker Compose 简介 Docker Compose 常用命令 使用 Docker Compose 启动 WordPress 普通启动方式&#xff08;使用 Docker 命令&#xff09; 使用 Docker Compose 启动 Docker Compose 的特性 Docker Compose 简介 Docker Compose 是一个用于定义和运行多容器 Dock…

MySQL误删数据怎么办?

文章目录 1. 从备份恢复数据2. 通过二进制日志恢复数据3. 使用数据恢复工具4. 利用事务回滚恢复数据5. 预防误删数据的策略总结 在使用MySQL进行数据管理时&#xff0c;误删数据是一个常见且具有高风险的操作。无论是因为操作失误、系统故障&#xff0c;还是不小心执行了删除命…

AAAI2024论文合集解读|Multi-granularity Causal Structure Learning-water-merged

论文标题 Multi-granularity Causal Structure Learning 多粒度因果结构学习 论文链接 Multi-granularity Causal Structure Learning 论文下载 论文作者 Jiaxuan Liang, Jun Wang, Guoxian Yu, Shuyin Xia, Guoyin Wang 内容简介 本文提出了一种新颖的方法&#xff0c;…

python3+TensorFlow 2.x(二) 回归模型

目录 回归算法 1、线性回归 (Linear Regression) 一元线性回归举例 2、非线性回归 3、回归分类 回归算法 回归算法用于预测连续的数值输出。回归分析的目标是建立一个模型&#xff0c;以便根据输入特征预测目标变量&#xff0c;在使用 TensorFlow 2.x 实现线性回归模型时&…

【景区导游——LCA】

题目 代码 #include <bits/stdc.h> using namespace std; using ll long long; const int N 1e5 10; const int M 2 * N; int p[N][18], d[N], a[N]; ll dis[N][18]; //注意这里要开long long int h[N], e[M], ne[M], idx, w[M]; int n, k; void add(int a, int b, …

家政预约小程序11分类展示

目录 1 创建页面2 配置导航菜单3 配置侧边栏选项卡4 配置数据列表5 首页和分类页联动总结 我们现在在首页开发了列表显示服务信息的功能&#xff0c;在点击导航菜单的时候&#xff0c;需要自动跳转到对应的分类&#xff0c;本篇我们介绍一下使用侧边栏选项卡实现分类显示的功能…

CVE-2023-38831 漏洞复现:win10 压缩包挂马攻击剖析

目录 前言 漏洞介绍 漏洞原理 产生条件 影响范围 防御措施 复现步骤 环境准备 具体操作 前言 在网络安全这片没有硝烟的战场上&#xff0c;新型漏洞如同隐匿的暗箭&#xff0c;时刻威胁着我们的数字生活。其中&#xff0c;CVE - 2023 - 38831 这个关联 Win10 压缩包挂…

WPF进阶 | WPF 数据绑定进阶:绑定模式、转换器与验证

WPF进阶 | WPF 数据绑定进阶&#xff1a;绑定模式、转换器与验证 一、前言二、WPF 数据绑定基础回顾2.1 数据绑定的基本概念2.2 数据绑定的基本语法 三、绑定模式3.1 单向绑定&#xff08;One - Way Binding&#xff09;3.2 双向绑定&#xff08;Two - Way Binding&#xff09;…