如何让ES低成本、高性能?滴滴落地ZSTD压缩算法的实践分享

前文分别介绍了滴滴自研的ES强一致性多活是如何实现的、以及如何提升ES的性能潜力。由于滴滴ES日志场景每天写入量在5PB-10PB量级,写入压力和业务成本压力大,为了提升ES的写入性能,我们让ES支持ZSTD压缩算法,本篇文章详细展开滴滴在落地ZSTD压缩算法上的思考和实践。

// 背 景 //

ES通过索引(Index)对外提供数据检索能力,索引是用于组织和存储数据的逻辑单元。每个索引由若干个分片(shard)组成,每个分片就是一个Lucene索引,可以在不同的节点上进行分布式存储和并行处理,提高性能和可伸缩性。每个分片由一组段文件(segment)组成,段是分片中更小的存储和搜索单元,是一组物理文件,包含了检索需要的倒排索引(词项和文档ID的映射关系)和文档存储(字段值和其他元数据),如下图:

98a4d2bdec9aed3eeb161c710e8e4051.png

ES数据模型

Lucene作为ES的底层索引引擎,提供了灵活的数据检索能力,同时也导致CPU、存储占用较为严重。为实现降本增效,23年上半年,ES团队开启了Lucene压缩编码优化专项,通过改进存储层压缩算法,从而降低单位Document所占用的资源。本文概述了ES的底层索引文件,并介绍了Lucene存储压缩编码的优化。

// Lucene索引文件介绍 //

ES的压缩编码优化专项涉及到Lucene底层的文件存储,Lucene索引由一组Segment构成,每个Segment包含了一系列文件,重点文件类型如下图:

b20303e43bd25eb52b4f347fcbe666ee.png

  • 行存文件:包括原文存储文件和原文索引文件。原文存储文件,即.fdt文件。用户写入的原始数据都被存储于该文件中,因其占比大,为节约存储,Lucene在原文存储上支持LZ4压缩和ZIP压缩;原文索引文件,即.fdx文件,它存储了原文数据在原文存储文件中的位置信息,建立起了doc id和原文之间的联系,以支持快速访问和定位。

  • 列存文件:即.dvd文件,常被应用于一些OLAP分析引擎中。列存文件按列组织数据,不同Document中的同一列数据(Field),相邻存放在一起,这样可以加速该列聚合分析性查询。同时,相邻每列类型相同,在存储的时候可以进行统一性的编码优化,提高压缩率,减少存储磁盘空间的占用。

  • 索引相关文件:ES依靠分词产生倒排索引,使其具备强大的全文检索能力。索引相关文件中,重点文件包含:字典数据文件&倒排索引文件。字典数据文件,即.tim文件,通过用户配置的索引分词器,能够从用户数据中提取分词信息并存储在.tim文件中。同一列的分词信息,相邻存放,按块组织;倒排索引文件,即.doc文件,也被称为"倒排拉链表",它记录了每一个分词所关联的文档列表,能够实现快速的单词到文档的倒排查找。

// ZSTD压缩算法调研与分析 //

ES线上集群中资源比较紧张的主要是日志集群,集群写多读少,高峰期CPU使用率在85%左右,写入性能是它的主要瓶颈。通过调研可以发现原文存储文件的占比最大,基本都超过了30%,有些索引甚至超过了70%。由此,我们明确了索引文件压缩编码优化的重心。

目前滴滴ES线上采用的是7.6.0版本,对应的Lucene版本是8.4.0,该版本支持两种压缩策略:

  • BEST_SPEED,是ES索引默认的压缩算法,使用了LZ4压缩。压缩与解压速度快,CPU占用低,但压缩效果弱。    

  • BEST_COMPRESSION,使用了ZIP压缩。压缩与解压速度慢,CPU占用高,但压缩效果好。

Lucene的压缩算法仅针对占比最大的行存文件生效,其他文件通过自定义编码优化来降低存储。目前滴滴ES日志集群采用BEST_COMPRESSION压缩算法,通过ES压缩比测试发现,日志场景下,同一个索引采用ZIP比LZ4低20% ~ 40%的磁盘存储占用空间。但通过分析日志集群的CPU使用情况可以发现,ES压缩模块的CPU占比较高,一些日志集群甚至超过30%,如下图:

82f0a2c485f5502cfc61445a2bbd3fad.png

CPU损耗占比

在上述背景下,我们调研了ZSTD压缩算法,ZSTD(Zstandard)底层基于FSE编码实现,具有出色的压缩和解压速度。ZSTD算法的实现经过了高度优化,通过SIMD等指令集能够充分利用硬件并行性,同时编码过程大量依赖位移运算来完成状态的切换,以此提高处理速度。ZSTD采用字典压缩算法,通过引用字典中的匹配项,能够大大减少重复数据的存储空间,提高压缩比。与此同时,ZSTD采用多级压缩策略,在不同的压缩级别中应用不同的压缩算法,能够在不同的应用场景中灵活地平衡速度和压缩比。

为了验证它的性能,采用bamai线上1GB的日志文件做压缩性能测试,测试发现,ZSTD的压缩速度是ZIP的4.5倍,解压缩速度是ZIP的1.5倍,压缩比几乎持平,如下图所示,ZSTD压缩算法兼顾了LZ4压缩的"快"及ZIP压缩的"效果好"。

e43a0557bb5d283429a81f7a504e0b60.png

压缩算法对比

// ZSTD压缩算法落地 //

为了实现ZSTD在滴滴ES的落地,我们从以下方面着手:

源码开发

1、ES setting和engine扩展

ES通过setting给每个索引配置压缩格式,需要在ES setting中支持ZSTD压缩格式。ES会为每个shard初始化一个engine,不同的分片类型或状态对应不同的engine,例如索引close对应的是noop engine,DCDR从索引对应的following engine,需要在不同类型的engine上抽象并扩展它的ZSTD压缩能力。

2、Lucene CompressionMode 扩展

Lucene是一个由Java编写的全文搜索引擎库,而ZSTD算法是基于C++实现的,因此在Lucene端引入了zstd-jni来扩展ZSTD压缩能力。通过扩展CompressionMode,自定义ZStandardDecompressor和ZStandardCompressor来实现数据的按块压缩、解压缩。

参数调优

1、Chunk Size调优

行存文件内部是以Chunk形式组织的,Chunk Size通常为数十KB级别。滴滴ES7.6.0版本采用的是Lucene 8.4版本, LZ4压缩算法设置的Chunk Size为16kb,而ZIP压缩算法设置的是60kb。将索引设置为ZSTD压缩格式并导入一批线上数据后,压缩结果如表所示。

1e4b3d90edde88b9830d10a31429eb64.png

Chunk Size压缩比对表

增大ChunkSize可以获得一个更大的数据区间内的共享字典数据,从而获得更好的压缩效果。但这也会导致随机访问时延变大、CPU消耗进一步增大。为保证后期索引压缩格式切换为ZSTD时不会出现数据膨胀问题,ChunkSize采用的是60kb。

2、ZSTD压缩等级调优

ZSTD采用多级压缩策略,它 提供了从 1 到 22 的压缩等级,数值越大表示压缩比越高,但压缩和解压缩速度越慢、CPU损耗越高。设置不同的压缩等级,导入测试数据,压缩结果如下表所示:

263a4bfb115a36f7557a369c0e95c28f.png

压缩等级性能比对表

通过增大压缩等级能够降低存储,例如将压缩等级调整为9,.fdt文件能够下降10%左右的存储,索引整体存储下降5%,此时CPU损耗和ZIP基本持平。

ES线上日志集群写多读少,采用的都是物理机(SSD硬盘),集群高峰期CPU使用率超过80%,集群整体磁盘水位在55%左右,CPU使用率是它的瓶颈。因此,采用的压缩等级为3,该等级在速度和压缩比之间取得了较好的平衡,并且能够尽可能地降低集群CPU使用率。

其他

1、解决Lucene打包部分依赖加载失败问题,比如:Lucene采用ivy进行依赖管理,通过引入repo解决Lucene打包过程中Maven主仓库中找不到 org.restlet.jee jar的问题,如下图:

51adb8193b99feadb47681f5c351dd37.png

ivy依赖导入图

2、通过前置初始化zstd模块,解决ES运行时动态加载zstd-jni-jar失败问题。

3、通过扩展noop engine的ZSTD压缩能力,解决索引close场景ZSTD类型解析失败问题。

// 上线效果 //

经过三个月的实践与优化,目前已在16个集群上线了ES-ZSTD版本,并将日志集群全量索引(6w+)以及部分公共集群索引的压缩格式均切换为ZSTD,上线后所有日志集群高峰期CPU使用率平均降幅达到15%,使ES可以提供更高性能、更低成本的检索服务,主要效果如下:

更高性能

1、某日志集群A上线效果

ES某日志集群A上线ES-ZSTD版本并将全量索引切换压缩切换为ZSTD格式后,集群高峰期CPU使用率下降18%,写入reject同比下降50%。

4cfafb7624a1e87cca101cb6ff9b9ea5.png

集群CPU Idle图(集群A)

d85e419ac2e69709f6e34f3f21ddf0b1.png

DataNode写入reject图(集群A)

2、某超大日志索引M切换效果

ES某超大线上日志索引M压缩格式由ZIP切换为ZSTD后,写入条数不变的情况下,集群CPU使用率下降15%,写入性能提升25%。

6595c204985546c3c2187a8ae988c563.png

集群CPU Idle图(集群B)

90ea129f0d6d750607a1fc7e2e0dbf43.png

索引写入总耗时(索引M)

更低成本

1、LZ4压缩格式索引切换为ZSTD效果

ES日志集群还残留着部分LZ4压缩的日志索引,将这些日志索引切换为ZSTD压缩格式后,平均索引存储下降达到30%,如下图:

cbdc4a9796446de24816d76e3b4e4004.png

索引存储图

2、日志集群缩容

将索引压缩格式切换为ZSTD后,能够有效降低集群CPU,因此可以进行集群资源调整。目前已经缩容机器超过20台,仍在持续下线中。

// 总 结 //

ZSTD助力ES提供更高性能、更低成本的检索服务。之后也会陆续开启读写分离、ES大版本升级等项目,进一步助力业务发展。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/88225.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

CCLINK IE 转MODBUS-RTU网关modbusrtu与485区别

远创智控YC-CCLKIE-RTU。这款产品的主要功能是将各种MODBUS-RTU、RS485、RS232设备接入到CCLINK IE FIELD BASIC网络中。 那么,这款通讯网关又有哪些特点呢?首先,它能够连接到CCLINK IE FIELD BASIC总线中作为从站使用,同时也能连…

Python Opencv实践 - 图像属性相关

import numpy as np import cv2 as cv import matplotlib.pyplot as pltimg cv.imread("../SampleImages/pomeranian.png", cv.IMREAD_COLOR) plt.imshow(img[:,:,::-1])#像素操作 pixel img[320,370] print(pixel)#只获取蓝色通道的值 pixel_blue img[320,370,0]…

JProfiler —CPU评测

当JProfiler测量方法调用的执行时间及其调用堆栈时,我们称之为“CPU评测”。这些数据以多种方式呈现。根据你试图解决的问题,其中一个或另一个演示将是最有帮助的。默认情况下不会记录CPU数据,您必须打开CPU记录才能捕获有趣的用例。 一、调…

Mac如何打开隐藏文件中Redis的配置文件redis.conf

Redis下载(通过⬇️博客下载的Redis默认路径为:/usr/local/etc) Redis下载 1.打开终端进入/usr文件夹 cd /usr 2.打开/local/文件夹 open local 3.找到redis.conf并打开,即可修改配置信息

《Zookeeper》源码分析(九)之选举通信网络

在上一篇文章中讲到QuorumCnxManager,它负责zookeeper服务器在选举期间最底层的网络通信,整个网络涉及到的类如下: 整个网络建立的过程如下: 选举前创建好QuorumCnxManager实例,并在QuorumCnxManager构造函数中创建好…

解决selenium的“can‘t access dead object”错误

目录 问题描述 原因 解决方法 示例代码 资料获取方法 问题描述 在python执行过程中,提示selenium.common.exceptions.WebDriverException: Message: TypeError: cant access dead object 原因 原因是代码中用到了frame,获取元素前需要切换到frame才能定位到…

21 | 朝阳医院数据分析

朝阳医院2018年销售数据为例,目的是了解朝阳医院在2018年里的销售情况,通过对朝阳区医院的药品销售数据的分析,了解朝阳医院的患者的月均消费次数,月均消费金额、客单价以及消费趋势、需求量前几位的药品等。 import numpy as np from pandas import Series,DataFrame impo…

C++ 虚继承

C棱形继承 在 C 中,在使用 多继承 时,如果发生了如果类 A 派生出类 B 和类 C,类 D 继承自类 B 和类 C,这时候就发生了菱形继承。 如果发生了菱形继承,这个时候类 A 中的 成员变量 和 成员函数 继承到类 D 中变成了两…

约束综合中的逻辑互斥时钟(Logically Exclusive Clocks)

注:本文翻译自Constraining Logically Exclusive Clocks in Synthesis 逻辑互斥时钟的定义 逻辑互斥时钟是指设计中活跃(activate)但不彼此影响的时钟。常见的情况是,两个时钟作为一个多路选择器的输入,并根据sel信号…

【Linux】程序地址空间

程序地址空间 首先引入地址空间的作用什么是地址空间为什么要有地址空间 首先引入地址空间的作用 1 #include <stdio.h>2 #include <unistd.h>3 #include <stdlib.h>4 int g_val 100;6 int main()7 {8 pid_t id fork();9 if(id 0)10 {11 int cn…

【Megatron-DeepSpeed】张量并行工具代码mpu详解(四):张量并行版Embedding层及交叉熵的实现及测试

相关博客 【Megatron-DeepSpeed】张量并行工具代码mpu详解(四)&#xff1a;张量并行版Embedding层及交叉熵的实现及测试 【Megatron-DeepSpeed】张量并行工具代码mpu详解(三)&#xff1a;张量并行层的实现及测试 【Megatron-DeepSpeed】张量并行工具代码mpu详解(一)&#xff1a…

测试老鸟经验总结,Jmeter性能测试-重要指标与性能结果分析(超细)

目录&#xff1a;导读 前言一、Python编程入门到精通二、接口自动化项目实战三、Web自动化项目实战四、App自动化项目实战五、一线大厂简历六、测试开发DevOps体系七、常用自动化测试工具八、JMeter性能测试九、总结&#xff08;尾部小惊喜&#xff09; 前言 Aggregate Report …

【CTF-web】修改请求头(XFF)

题目链接&#xff1a;https://ctf.bugku.com/challenges/detail/id/79.html 随意输入后可以看到需要本地管理员登录&#xff0c;得知这是一道需要修改XFF头的题。 XFF即X-Forwarded-For&#xff0c;该请求标头是一个事实上的用于标识通过代理服务器连接到 web 服务器的客户端的…

【Apollo】Apollo-ros版本架构学习与源码分析

&#x1f60f;★,:.☆(&#xffe3;▽&#xffe3;)/$:.★ &#x1f60f; 这篇文章主要介绍Apollo-ros版本架构学习与源码分析。 无专精则不能成&#xff0c;无涉猎则不能通。——梁启超 欢迎来到我的博客&#xff0c;一起学习&#xff0c;共同进步。 喜欢的朋友可以关注一下&a…

途乐证券-新股行情持续火爆,哪些因素影响首日表现?

全面注册制以来&#xff0c;参加打新的投资者数量全体呈现下降。打新收益下降&#xff0c;破发频出的布景下&#xff0c;投资者打新策略从逢新必打逐步向优选个股改变。 经过很多历史数据&#xff0c;从商场定价、参加者热度以及机构重视度维度揭秘了上市后股价体现优秀的个股具…

时序预测 | Python实现LSTM长短期记忆网络时间序列预测(电力负荷预测)

时序预测 | Python实现LSTM长短期记忆网络时间序列预测(电力负荷预测) 目录 时序预测 | Python实现LSTM长短期记忆网络时间序列预测(电力负荷预测)效果一览基本描述模型结构程序设计参考资料效果一览

记录一下关于word存放代码出现的问题

如下图所示&#xff0c;从 Word 中复制代码并粘贴到其他地方&#xff0c;例如文本编辑器或代码编辑器中&#xff0c;有时会出现额外的连字符或破折号。这是因为 Word 使用了特定的字符编码和格式&#xff0c;而这些字符在代码中可能不被支持或解析为特殊字符。   可见有时从…

拓扑布局和建立小型网络

练习 2.6.1&#xff1a;拓扑布局和建立小型网络 地址表 本实验不包括地址表。 拓扑图 学习目标 正确识别网络中使用的电缆物理连接点对点交换网络验证每个网络的基本连通性 简介&#xff1a; 许多网络问题都可以在网络的物理层解决。因此&#xff0c;必须清楚了解网络连接…

13-把矩阵看作是对系统的描述

探索矩阵乘法&#xff1a;更深刻的理解与应用视角 &#x1f9e9;&#x1f50d; 引言 &#x1f4d6; 在我们进一步探讨矩阵乘法之前&#xff0c;让我们从不同的角度来理解什么是矩阵&#xff0c;以及如何将矩阵视为一个系统。我们之前已经介绍了矩阵的基本概念和运算&#xff…

【QT】 QSS样式表设计一文了解

很高兴在雪易的CSDN遇见你 &#xff0c;给你糖糖 欢迎大家加入雪易社区-CSDN社区云 前言 本文分享QT界面设计中的QSS样式技术&#xff0c;主要从**、**和**方面展开&#xff0c;希望对各位小伙伴有所帮助&#xff01;学会了QSS样式设计&#xff0c;就可以开动你的审美&#…