dialogbot:开箱即用的对话机器人解决方案,涵盖问答型对话、任务型对话和聊天型对话等多种场景,为您提供全方位的对话交互体验。

dialogbot:开箱即用的对话机器人解决方案,涵盖问答型对话、任务型对话和聊天型对话等多种场景,支持网络检索问答、领域知识问答、任务引导问答和闲聊问答,为您提供全方位的对话交互体验。

人机对话系统一直是AI的重要方向,图灵测试以对话检测机器是否拥有高度的智能。如何构建人机对话系统或者对话机器人呢?

  • 对话系统经过三代的演变:

    1. 规则对话系统:垂直领域可以利用模板匹配方法的匹配问句和相应的答案。优点是内部逻辑透明,易于分析调试,缺点是高度依赖专家干预,
      缺少灵活性和可可拓展性。
    2. 统计对话系统:基于部分可见马尔科夫决策过程的统计对话系统,先对问句进行贝叶斯推断,维护每轮对话状态,再跟进对话状态进行对话策略的选择,
      从而生成自然语言回复。基本形成现代的对话系统框架,它避免了对专家的高度依赖,缺点是模型难以维护,可拓展性比较受限。
    3. 深度对话系统:基本延续了统计对话系统的框架,但各个模型采用深度网络模型。利用了深度模型强大的表征能力,语言分类和生成能力大幅提高,
      缺点是需要大量标注数据才能有效训练模型。
  • 对话系统分为三类:

    • 问答型对话:多是一问一答,用户提问,系统通过对问题解析和查找知识库返回正确答案,如搜索。
    • 任务型对话:指由任务驱动的多轮对话,机器需要通过理解、主动询问、澄清等方式确定用户目标,然后查找知识库返回结果,完成用户需求。
      如:机器人售电影票。
    • 聊天型对话:目标是产生有趣且富有信息量的自然答复使人机对话持续下去,如小度音响。

1.问答型对话(Search Dialogue Bot)

1.1 本地检索问答

计算用户问句与问答库中问句的相似度,选择最相似的问句,给出其对应的答复。

句子相似度计算包括以下方法:

  • TFIDF
  • BM25
  • OneHot
  • Query Vector

1.2 网络检索问答

对百度、Bing的搜索结果摘要进行答案的检索

  • 百度搜索,包括百度知识图谱、百度诗词、百度万年历、百度计算器、百度知道
  • 微软Bing搜索,包括bing知识图谱、bing网典

1.3 任务型对话(Task Oriented Dialogue Bot)

  • End to End Memory Networks(memn2n)
  • BABi dataset

1.4 聊天型对话(Generative Dialogue Bot)

  • GPT2 Model
  • Sequence To Sequence Model(seq2seq)
  • Taobao dataset

2.Demo展示

Official Demo: https://www.mulanai.com/product/dialogbot/

The project is based on transformers 4.4.2+, torch 1.6.0+ and Python 3.6+.
Then, simply do:

pip3 install torch # conda install pytorch
pip3 install -U dialogbot

or

pip3 install torch # conda install pytorch
git clone https://github.com/shibing624/dialogbot.git
cd dialogbot
python3 setup.py install

3.应用场景展示

3.1 问答型对话(Search Bot)

example: examples/bot_demo.py

from dialogbot import Botbot = Bot()
response = bot.answer('姚明多高呀?')
print(response)

output:

query: "姚明多高呀?"
answer: "226cm"

3.2 任务型对话(Task Bot)

example: examples/taskbot_demo.py

3.3 聊天型对话(Generative Bot)

3.3.1 GPT2模型使用

基于GPT2生成模型训练的聊天型对话模型。

模型已经 release 到huggingface models:shibing624/gpt2-dialogbot-base-chinese

example: examples/genbot_demo.py

from dialogbot import GPTBot
bot = GPTBot()
r = bot.answer('亲 你吃了吗?', use_history=False)
print('gpt2', r)

output:

query: "亲 吃了吗?"
answer: "吃了"

3.3.2 GPT2模型fine-tune

  • 数据预处理
    在项目根目录下创建data文件夹,将原始训练语料命名为train.txt,存放在该目录下。train.txt的格式如下,每段闲聊之间间隔一行,格式如下:
真想找你一起去看电影
突然很想你
我也很想你想看你的美照
亲我一口就给你看
我亲两口
讨厌人家拿小拳拳捶你胸口今天好点了吗?
一天比一天严重
吃药不管用,去打一针。别拖着

运行preprocess.py,对data/train.txt对话语料进行tokenize,然后进行序列化保存到data/train.pkl。train.pkl中序列化的对象的类型为List[List],记录对话列表中,每个对话包含的token。

cd dialogbot/gpt/
python preprocess.py --train_path data/train.txt --save_path data/train.pkl
  • 训练模型
    运行train.py,使用预处理后的数据,对模型进行自回归训练,模型保存在根目录下的model文件夹中。

在训练时,可以通过指定patience参数进行early stop。当patience=n时,若连续n个epoch,模型在验证集上的loss均没有下降,则进行early stop,停止训练。当patience=0时,不进行early stop。

代码中默认关闭了early stop,因为在实践中,early stop得到的模型的生成效果不一定会更好。

python train.py --epochs 40 --batch_size 8 --device 0,1 --train_path data/train.pkl

更多的训练参数介绍,可直接看train.py中的set_args()函数中的参数说明

3.3.3 预测模型(人机交互)

运行interact.py,使用训练好的模型,进行人机交互,输入q结束对话之后,聊天记录将保存到sample.txt文件中。

python interact.py --no_cuda --model_dir path_to_your_model

执行interact.py时,可以尝试通过调整topk、topp、repetition_penalty、max_history_len等参数,调整生成的效果。更多的参数介绍,可直接看interact.py的set_args()函数中的参数说明
如果要使用GPU进行生成,则不要调用–no_cuda参数,并且通过–device gpu_id来指定使用哪块GPU。

  • 问答示例
  • sample1
  user :在干嘛
chatbot:睡觉user :这么早就睡觉啦
chatbot:嗯啊你也早点睡啊user :我再玩一会儿手机
chatbot:早点休息晚安user :拜拜啦
chatbot:晚安晚安user :多喝热水
chatbot:哈哈哈user :多喝热水
chatbot:好的咯
  • sample2
  user :在吗
chatbot:在user :我不开心
chatbot:怎么啦user :最近好累啊
chatbot:是挺累的user :作业好多啊
chatbot:还好还好user :我觉得我快要挂科了
chatbot:我也是啊,但是我觉得我快熬出头了user :不说了,我还有好多作业没写
chatbot:我也是啊好多啊user :那先这样,下次再聊,再见了
chatbot:好哒

4.数据集

  • 闲聊语料分享
    |中文闲聊语料 | 数据集地址 |语料描述|
    |---------|--------|--------|
    |常见中文闲聊|chinese_chatbot_corpus|包含小黄鸡语料、豆瓣语料、电视剧对白语料、贴吧论坛回帖语料、微博语料、PTT八卦语料、青云语料等|
    |50w中文闲聊语料 | 百度网盘【提取码:4g5e】 或 GoogleDrive |包含50w个多轮对话的原始语料、预处理数据|
    |100w中文闲聊语料 | 百度网盘【提取码:s908】 或 GoogleDrive|包含100w个多轮对话的原始语料、预处理数据|

中文闲聊语料的内容样例如下:

谢谢你所做的一切
你开心就好
开心
嗯因为你的心里只有学习
某某某,还有你
这个某某某用的好你们宿舍都是这么厉害的人吗
眼睛特别搞笑这土也不好捏但就是觉得挺可爱
特别可爱啊今天好点了吗?
一天比一天严重
吃药不管用,去打一针。别拖着
  • 模型分享
模型共享地址模型描述
model_epoch40_50wshibing624/gpt2-dialogbot-base-chinese 或 百度网盘(提取码:taqh) 或 GoogleDrive使用50w多轮对话语料训练了40个epoch,loss降到2.0左右。
  • Reference
  • Wen T H, Vandyke D, Mrksic N, et al. A Network-based End-to-End Trainable Task-oriented Dialogue System[J]. 2016.
  • How NOT To Evaluate Your Dialogue System: An Empirical Study of Unsupervised Evaluation Metrics for Dialogue Response Generation
  • A. Bordes, Y. Boureau, J. Weston. Learning End-to-End Goal-Oriented Dialog 2016
  • Zhao T, Eskenazi M. Towards End-to-End Learning for Dialog State Tracking and Management using Deep Reinforcement Learning [J]. arXiv preprint arXiv:1606.02560, 2016.
  • Kulkarni T D, Narasimhan K R, Saeedi A, et al. Hierarchical deep reinforcement learning: Integrating temporal abstraction and intrinsic motivation [J]. arXiv preprint arXiv:1604.06057, 2016.
  • BBQ-Networks: Efficient Exploration in Deep Reinforcement Learning for Task-Oriented Dialogue Systems
  • Deep Reinforcement Learning with Double Q-Learning
  • Deep Attention Recurrent Q-Network
  • SimpleDS: A Simple Deep Reinforcement Learning Dialogue System
  • Deep Reinforcement Learning with a Natural Language Action Space
  • Integrating User and Agent Models: A Deep Task-Oriented Dialogue System
  • The Curious Case of Neural Text Degeneration
  • DialoGPT: Large-Scale Generative Pre-training for Conversational Response Generation
  • vyraun/chatbot-MemN2N-tensorflow
  • huggingface/transformers
  • Morizeyao/GPT2-Chinese
  • yangjianxin1/GPT2-chitchat

参考链接:https://github.com/shibing624/dialogbot

如果github进入不了也可进入 https://download.csdn.net/download/sinat_39620217/88205596 免费下载相关资料

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/88249.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Mongodb 常用操作

// 查询 user_id 是否存在 db.getCollection("t_mongo_user").find({"user_id" : { $exists: true }}) // 查询 user_id 10 的记录 db.getCollection("t_mongo_user").find({"user_id" : 10}) // 排序 -1,按照 _id 倒…

python之matplotlib入门初体验:使用Matplotlib进行简单的图形绘制

目录 绘制简单的折线图1.1 修改标签文字和线条粗细1.2 校正图形1.3 使用内置样式1.4 使用scatter()绘制散点图并设置样式1.5 使用scatter()绘制一系列点1.6 python循环自动计算数据1.7 自定义颜色1.8 使用颜色映射1.9 自动保存图表练习题 绘制简单的折线图 绘制一个简单折线图…

每期一个小窍门: 玩转go mod 命令

看完本期小窍门 你将学会 go下载/更新 包的命令如何挎包调用/路径名称约定init()函数的作用和一些细节 本文涉及到的目录结构如下 关于 go.mod go.sum 这个demo依赖 github.com/bytedance/sonic 可以使用下面两个命令来确保依赖正常加载 go get github.com/bytedance/son…

2023年上半年数学建模竞赛题目汇总与难度分析

2023年上半年数学建模竞赛题目汇总与难度分析 ​由于近年来国赛ABC题出题方式漂浮不定,没有太大的定性,目前总体的命题方向为,由之前的单一模型问题变为数据分析评价优化或者预测类题目是B、C题的主要命题方向。为了更好地把握今年命题的主方…

【源码分析】XXL-JOB的执行器的注册流程

目的:分析xxl-job执行器的注册过程 流程: 获取执行器中所有被注解(xxlJjob)修饰的handler执行器注册过程执行器中任务执行过程 版本:xxl-job 2.3.1 建议:下载xxl-job源码,按流程图debug调试,看堆栈信息…

gcc/g++ 编译选项详解

gcc/g 编译选项详解 文章目录 gcc/g 编译选项详解编译步骤gcc 与 g 区别gcc 命令的常用选项编译优化选项-O 优化-O1优化-O2-O0-Os-Ofast-Og-Oz-O 选项控制特定的优化 WarningsReference>>>>> 欢迎关注公众号【三戒纪元】 <<<<< 编译步骤 gcc 、…

Shell编程之正则表达式(非常详细)

正则表达式 1.通配符和正则表达式的区别2.基本正则表达式2.1 元字符 &#xff08;字符匹配)2.2 表示匹配次数2.4 位置锚定2.5 分组 和 或者 3.扩展正则表达式4.部分文本处理工具4.1 tr 命令4.2 cut命令4.3 sort命令4.4 uniq命令 1.通配符和正则表达式的区别 通配符一般用于文件…

Ansible从入门到精通【六】

大家好&#xff0c;我是早九晚十二&#xff0c;目前是做运维相关的工作。写博客是为了积累&#xff0c;希望大家一起进步&#xff01; 我的主页&#xff1a;早九晚十二 专栏名称&#xff1a;Ansible从入门到精通 立志成为ansible大佬 ansible templates 模板&#xff08;templa…

闭环控制方法及其应用:优缺点、场景和未来发展

闭环控制是一种基本的控制方法&#xff0c;它通过对系统输出与期望值之间的误差进行反馈&#xff0c;从而调整系统输入&#xff0c;使系统输出更加接近期望值。闭环控制的主要目标是提高系统的稳定性、精确性和鲁棒性。在实际应用中&#xff0c;闭环控制有多种方法&#xff0c;…

释放AI创作潜能:从大模型训练到高产力应用

文章目录 每日一句正能量前言什么是人工智能生成内容&#xff08;AIGC&#xff09;人工智能生成内容&#xff08;AIGC&#xff09;能做什么为什么要用人工智能生成内容&#xff08;AIGC&#xff09;创作成果用Java实现冒泡排序算法学生信息收集系统学生请假管理系统需求分析教务…

苹果电脑图像元数据编辑器:MetaImage for Mac

MetaImage for Mac是一款功能强大的照片元数据编辑器&#xff0c;它可以帮助用户编辑并管理照片的元数据信息&#xff0c;包括基本信息和扩展信息。用户可以根据需要进行批量处理&#xff0c;方便快捷地管理大量照片。 MetaImage for Mac还提供了多种导入和导出格式&#xff0…

东南大学齿轮箱故障诊断(Python代码,MSCNN结合LSTM结合注意力机制模型,代码有注释)

运行代码要求&#xff1a; 代码运行环境要求&#xff1a;Keras版本>2.4.0&#xff0c;python版本>3.6.0 1.东南大学采集数据平台&#xff1a; 数据 该数据集包含2个子数据集&#xff0c;包括轴承数据和齿轮数据&#xff0c;这两个子数据集都是在传动系动力学模拟器&am…

基于Matlab实现心电信号小波特征提取和对应疾病识别仿真(附上源码+数据集)

本文基于Matlab平台&#xff0c;研究了心电信号的小波特征提取方法&#xff0c;并应用于心电信号疾病识别仿真实验中。首先&#xff0c;介绍了心电信号的基本特征和常见的心电疾病。然后&#xff0c;详细阐述了小波变换的原理和方法&#xff0c;并提出了一种基于小波分解和小波…

运维监控学习笔记3

DELL的IPMI页面的登录&#xff1a; 风扇的状态&#xff1a; 电源温度&#xff1a;超过70度就告警&#xff1a; 日志信息&#xff1a; 可以看到更换过磁盘。 iDRAC的设置 虚拟控制台&#xff1a;启动远程控制台&#xff1a; 可以进行远程控制。 机房工程师帮我们接远程控制&…

如何让ES低成本、高性能?滴滴落地ZSTD压缩算法的实践分享

前文分别介绍了滴滴自研的ES强一致性多活是如何实现的、以及如何提升ES的性能潜力。由于滴滴ES日志场景每天写入量在5PB-10PB量级&#xff0c;写入压力和业务成本压力大&#xff0c;为了提升ES的写入性能&#xff0c;我们让ES支持ZSTD压缩算法&#xff0c;本篇文章详细展开滴滴…

CCLINK IE 转MODBUS-RTU网关modbusrtu与485区别

远创智控YC-CCLKIE-RTU。这款产品的主要功能是将各种MODBUS-RTU、RS485、RS232设备接入到CCLINK IE FIELD BASIC网络中。 那么&#xff0c;这款通讯网关又有哪些特点呢&#xff1f;首先&#xff0c;它能够连接到CCLINK IE FIELD BASIC总线中作为从站使用&#xff0c;同时也能连…

Python Opencv实践 - 图像属性相关

import numpy as np import cv2 as cv import matplotlib.pyplot as pltimg cv.imread("../SampleImages/pomeranian.png", cv.IMREAD_COLOR) plt.imshow(img[:,:,::-1])#像素操作 pixel img[320,370] print(pixel)#只获取蓝色通道的值 pixel_blue img[320,370,0]…

JProfiler —CPU评测

当JProfiler测量方法调用的执行时间及其调用堆栈时&#xff0c;我们称之为“CPU评测”。这些数据以多种方式呈现。根据你试图解决的问题&#xff0c;其中一个或另一个演示将是最有帮助的。默认情况下不会记录CPU数据&#xff0c;您必须打开CPU记录才能捕获有趣的用例。 一、调…

Mac如何打开隐藏文件中Redis的配置文件redis.conf

Redis下载(通过⬇️博客下载的Redis默认路径为&#xff1a;/usr/local/etc) Redis下载 1.打开终端进入/usr文件夹 cd /usr 2.打开/local/文件夹 open local 3.找到redis.conf并打开,即可修改配置信息

《Zookeeper》源码分析(九)之选举通信网络

在上一篇文章中讲到QuorumCnxManager&#xff0c;它负责zookeeper服务器在选举期间最底层的网络通信&#xff0c;整个网络涉及到的类如下&#xff1a; 整个网络建立的过程如下&#xff1a; 选举前创建好QuorumCnxManager实例&#xff0c;并在QuorumCnxManager构造函数中创建好…