时序预测 | MATLAB实现EEMD-LSTM、LSTM集合经验模态分解结合长短期记忆神经网络时间序列预测对比

时序预测 | MATLAB实现EEMD-LSTM、LSTM集合经验模态分解结合长短期记忆神经网络时间序列预测对比

目录

    • 时序预测 | MATLAB实现EEMD-LSTM、LSTM集合经验模态分解结合长短期记忆神经网络时间序列预测对比
      • 效果一览
      • 基本介绍
      • 模型搭建
      • 程序设计
      • 参考资料

效果一览

1

2
3
4
5
6

基本介绍

时序预测 | MATLAB实现EEMD-LSTM、LSTM集合经验模态分解结合长短期记忆神经网络时间序列预测对比。
1.MATLAB实现EEMD-LSTM、LSTM时间序列预测对比;
2.时间序列预测 就是先eemd把原输入全分解变成很多维作为输入 再输入LSTM预测 ;
3.运行环境Matlab2018b及以上,输出RMSE、MAPE、MAE等多指标对比,
先运行main1_eemd_test,进行eemd分解;再运行main2_lstm、main3_eemd_lstm;再运行main4_compare,两个模型对比。

模型搭建

EEMD-LSTM和LSTM集合是两种用于时间序列预测的方法,它们结合了经验模态分解 (Empirical Mode Decomposition, EMD) 和长短期记忆神经网络 (Long Short-Term Memory, LSTM)。这两种方法都具有一定的优势和适用场景,下面对它们进行对比。
EEMD-LSTM:
EEMD是一种数据分解方法,通过将时间序列分解成多个固有模态函数 (Intrinsic Mode Functions, IMF) 和一个剩余项,将非线性和非平稳的时间序列转化为多个平稳的子序列。
EEMD能够将时间序列的相关信息提取到不同的IMF中,每个IMF代表了时间序列中的不同频率成分。
LSTM是一种适用于序列数据的循环神经网络,能够捕捉长期依赖关系,适用于处理时间序列数据。
EEMD-LSTM的基本思路是将原始时间序列通过EEMD进行分解,然后将每个IMF作为LSTM的输入,利用LSTM模型对每个IMF进行预测,最后将预测结果合并得到最终的预测结果。通过构建多个独立的LSTM模型,每个模型都有不同的初始化条件和参数设置。每个LSTM模型都会对时间序列进行训练和预测,最后将它们的预测结果进行综合,例如通过平均或加权平均的方式得到最终的预测结果。优势在于通过建立多个模型,可以利用不同的初始化条件和参数组合,增加了模型的多样性,提高了整体的预测准确性。
对比:EEMD-LSTM利用EEMD将时间序列分解成不同频率的子序列,然后利用LSTM对每个子序列进行预测,最后将预测结果合并。这种方法能够更好地处理非线性和非平稳的时间序列,能够提取出不同频率成分的信息。然而,EEMD的分解过程可能会引入一些噪声,并且需要额外的计算步骤。
LSTM集合通过构建多个LSTM模型,利用不同的初始化条件和参数组合,增加了模型的多样性,提高了预测准确性。这种方法相对简单,不需要进行数据分解,适用于一般的时间序列预测任务。

程序设计

  • 完整程序和数据获取方式1:私信博主回复MATLAB实现EEMD-LSTM、LSTM集合经验模态分解结合长短期记忆神经网络时间序列预测对比,同等价值程序兑换;
  • 完整程序和数据下载方式2(资源处直接下载):MATLAB实现EEMD-LSTM、LSTM集合经验模态分解结合长短期记忆神经网络时间序列预测对比;
  • 完整程序和数据下载方式3(订阅《LSTM长短期记忆神经网络》专栏,同时可阅读《LSTM长短期记忆神经网络》专栏内容,数据订阅后私信我获取):MATLAB实现EEMD-LSTM、LSTM集合经验模态分解结合长短期记忆神经网络时间序列预测对比,专栏外只能获取该程序
%% 创建混合LSTM网络架构
% 输入特征维度
numFeatures  = f_;
% 输出特征维度
numResponses = 1;
FiltZise = 10;
%  创建"LSTM"模型layers = [...% 输入特征sequenceInputLayer([numFeatures 1 1],'Name','input')sequenceFoldingLayer('Name','fold')% LSTM特征学习lstmLayer(50,'Name','lstm1','RecurrentWeightsInitializer','He','InputWeightsInitializer','He')% LSTM输出lstmLayer(optVars.NumOfUnits,'OutputMode',"last",'Name','bil4','RecurrentWeightsInitializer','He','InputWeightsInitializer','He')dropoutLayer(0.25,'Name','drop3')% 全连接层fullyConnectedLayer(numResponses,'Name','fc')regressionLayer('Name','output')    ];layers = layerGraph(layers);layers = connectLayers(layers,'fold/miniBatchSize','unfold/miniBatchSize');%% LSTM训练选项
% 批处理样本
MiniBatchSize =128;
% 最大迭代次数
MaxEpochs = 500;options = trainingOptions( 'adam', ...'MaxEpochs',500, ...'GradientThreshold',1, ...'InitialLearnRate',optVars.InitialLearnRate, ...'LearnRateSchedule','piecewise', ...'LearnRateDropPeriod',400, ...'LearnRateDropFactor',0.2, ...'L2Regularization',optVars.L2Regularization,...'Verbose',false, ...'Plots','none');%% 训练混合网络
net = trainNetwork(XrTrain,YrTrain,layers,options);

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/129036772?spm=1001.2014.3001.5502
[2] https://blog.csdn.net/kjm13182345320/article/details/128690229

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/89324.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【 运维这些事儿 】- Gerrit代码审查详

文章目录 背景作用代码审查工具Gerrit镜像构建Dockerfile 部署配置 Gitlab代码同步ssh-agent 相关概念常用命令Git 配置使用 Git Review针对已有项目添加commit-msg,用于自动添加changeId添加源配置 .gitreview备注指定审核人自定义git命令 开发使用代码审查 背景 …

nginx基于主机和用户访问控制以及缓存简单例子

一.基于主机访问控制 1.修改nginx.conf文件 2.到其他主机上测试 (1)191主机 (2)180主机 二.基于用户访问控制 1.修改nginx.conf文件 2.使用hpasswd为用户创建密码文件,并指定到刚才指定的密码文件webck 3.测试…

item_get_desc获得TB/TM商品描述

一、接口参数说明: item_get_desc-获得TB/TM商品描述,点击更多API调试,请移步注册API账号点击获取测试key和secret 公共参数 请求地址: https://api-gw.onebound.cn/taobao/item_get_desc 名称类型必须描述keyString是调用key(…

Pytorch基于VGG cosine similarity实现简单的以图搜图(图像检索)

代码如下: from PIL import Image from torchvision import transforms import os import torch import torchvision import torch.nn.functional as Fclass VGGSim(torch.nn.Module):def __init__(self):super(VGGSim, self).__init__()blocks []blocks.append(t…

Python Opencv实践 - 图像缩放

import cv2 as cv import numpy as np import matplotlib.pyplot as pltimg_cat cv.imread("../SampleImages/cat.jpg", cv.IMREAD_COLOR) plt.imshow(img_cat[:,:,::-1])#图像绝对尺寸缩放 #cv.resize(src, dsize[, dst[, fx[, fy[, interpolation]]]]) #指定Size大…

企业服务器数据库遭到malox勒索病毒攻击后如何解决,勒索病毒解密

网络技术的发展不仅为企业带来了更高的效率,还为企业带来信息安全威胁,其中较为常见的就是勒索病毒攻击。近期,我们公司收到很多企业的求助,企业的服务器数据库遭到了malox勒索病毒攻击,导致系统内部的许多重要数据被加…

大数据课程I3——Kafka的消息流与索引机制

文章作者邮箱:yugongshiye@sina.cn 地址:广东惠州 ▲ 本章节目的 ⚪ 掌握Kafka的消息流处理; ⚪ 掌握Kafka的索引机制; ⚪ 掌握Kafka的消息系统语义; 一、Kafka消息流处理 1. Producer 写入消息 流程说明: 1. producer 要向Kafka生产消息,需要先通过…

使用node搭建服务器,前端自己写接口,将vue或react打包后生成的dist目录在本地运行

使用node.jsexpress或者使用node.jspm2搭建服务器,将vue或react打包后生成的dist目录在本地运行 vue项目打包后生成的dist目录如果直接在本地打开index.html,在浏览器中会报错,无法运行起来。 通常我是放到后端搭建的服务上面去运行,当时前端…

命令模式(C++)

定义 将一个请求(行为)封装为一个对象,从而使你可用不同的请求对客户进行参数化;对请求排队或记录请求日志,以及支持可撤销的操作。 应用场景 在软件构建过程中,“行为请求者”与“行为实现者”通常呈现一种“紧耦合”。但在某些场合——比…

jmeter提取token方式以及设置成全局变量(跨线程组传token值)方式

前言 今天Darren洋教大家如何使用jmeter中的插件来进行token值的提取与调用,今天Darren洋介绍两种jmeter提取token值的方式,一种是在当前线程组中直接提取token值,一种是跨线程组的方式进行token值的提取并调用给不同线程组里的HTTP接口使用。…

软件测试工程师的职业发展方向

一、软件测试工程师大致有4个发展方向: 1资深软件测试工程师 一般情况,软件测试工程师可分为测试工程师、高级测试工程师和资深测试工程师三个等级。 达到这个水平比较困难,这需要了解很多知识,例如C语言,JAVA语言,…

每天一道leetcode:1466. 重新规划路线(图论中等广度优先遍历)

今日份题目: n 座城市,从 0 到 n-1 编号,其间共有 n-1 条路线。因此,要想在两座不同城市之间旅行只有唯一一条路线可供选择(路线网形成一颗树)。去年,交通运输部决定重新规划路线,以…

el-tree-select那些事

下拉菜单树形选择器 用于记录工作及日常学习涉及到的一些需求和问题 vue3 el-tree-select那些事 1、获取el-tree-select选中的任意层级的节点对象 1、获取el-tree-select选中的任意层级的节点对象 1-1数据集 1-2画面 1-3代码 1-3-1画面代码 <el-tree-selectv-model"s…

React antd tree树组件 - 父子节点没有自动关联情况下 - 显示半选、全选状态以及实现父子节点互动

实现的效果图如下&#xff1a; 如Ant Design Vue 中所示&#xff0c;并没有提供获取半选节点的方法&#xff0c;当设置checked和checkStrictly时&#xff0c;父子节点也不再自动关联了 前提&#xff1a;从后端可以获取的数据分别是完整的树型数据、所有选中的节点数据&#…

教你如何为博客网站申请阿里云的免费域名HTTPS证书

如何为博客网站申请阿里云的免费域名HTTPS证书 文章目录 如何为博客网站申请阿里云的免费域名HTTPS证书前置条件&#xff1a;步骤1 例如阿里云控制台&#xff0c;选择SSL证书步骤2 申请购买免费证书步骤3 创建证书步骤3.1 证书申请步骤3.2 DNS域名验证 步骤4 等待证书审核成功&…

徐明君:品牌定位塑造独特价值与关键差异的新思维

在当今竞争激烈的市场环境中&#xff0c;品牌定位已成为企业生存与发展的关键要素。近年来&#xff0c;随着消费者需求的不断变化和市场的持续发展&#xff0c;品牌定位的内涵和方法也在不断演进。本文将探讨品牌定位的核心概念、作用以及如何有效运用品牌定位策略&#xff0c;…

如何将区块链新闻稿发布到海外媒体?

随着区块链技术的不断发展&#xff0c;越来越多的区块链项目涌现出来&#xff0c;各大媒体也开始关注和报道区块链新闻。然而&#xff0c;如何将区块链新闻稿发布到海外媒体成为了许多区块链项目所面临的难题。本文将介绍一些有效的方法&#xff0c;帮助区块链项目将新闻稿发布…

Kafka API与SpringBoot调用

文章目录 首先需要命令行创建一个名为cities的主题&#xff0c;并且创建该主题的订阅者。 1、使用Kafka原生API1.1、创建spring工程1.2、创建发布者1.3、对生产者的优化1.4、批量发送消息1.5、创建消费者组1.6 消费者同步手动提交1.7、消费者异步手动提交1.8、消费者同异步手动…