目录
1 metrics-server
2 指定内存请求和限制
3 指定 CPU 请求和限制
资源限制
在k8s中对于容器资源限制主要分为以下两类:
-
内存资源限制: 内存请求(request)和内存限制(limit)分配给一个容器。 我们保障容器拥有它请求数量的内存,但不允许使用超过限制数量的内存。
-
官网参考地址: 为容器和 Pod 分配内存资源 | Kubernetes
-
-
CPU 资源限制: 为容器设置 CPU request(请求) 和 CPU limit(限制)。 容器使用的 CPU 不能超过所配置的限制。 如果系统有空闲的 CPU 时间,则可以保证给容器分配其所请求数量的 CPU 资源。
-
官网参考地址: 为容器和 Pods 分配 CPU 资源 | Kubernetes
-
请求 request memory cpu :可以使用的基础资源 100M
限制 limit memory cpu :可以使用的最大资源 200M 超过最大资源之后容器会被 kill , OOM 错误
1 metrics-server
官网地址: GitHub - kubernetes-sigs/metrics-server: Scalable and efficient source of container resource metrics for Kubernetes built-in autoscaling pipelines.
Kubernetes Metrics Server (Kubernetes指标服务器),它是一个可扩展的、高效的容器资源度量源。Metrics Server 用于监控每个 Node 和 Pod 的负载(用于Kubernetes内置自动扩缩管道)。Metrics Server 从Kubelets 收集资源指标,并通过 Metrics API 在Kubernetes apiserver中公开,供 Horizontal Pod Autoscaler 和 Vertical Pod Autoscaler 使用。Metrics API 也可以通过 kubectl top 访问,使其更容易调试自动扩缩管道。
-
查看 metrics-server(或者其他资源指标 API
metrics.k8s.io
服务提供者)是否正在运行, 请键入以下命令:
kubectl get apiservices
-
如果资源指标 API 可用,则会输出将包含一个对
metrics.k8s.io
的引用。
NAME
v1beta1.metrics.k8s.io
-
安装 metrics-server
# components.yaml
apiVersion: v1
kind: ServiceAccount
metadata:labels:k8s-app: metrics-servername: metrics-servernamespace: kube-system
---
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata:labels:k8s-app: metrics-serverrbac.authorization.k8s.io/aggregate-to-admin: "true"rbac.authorization.k8s.io/aggregate-to-edit: "true"rbac.authorization.k8s.io/aggregate-to-view: "true"name: system:aggregated-metrics-reader
rules:- apiGroups:- metrics.k8s.ioresources:- pods- nodesverbs:- get- list- watch
---
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata:labels:k8s-app: metrics-servername: system:metrics-server
rules:- apiGroups:- ""resources:- nodes/metricsverbs:- get- apiGroups:- ""resources:- pods- nodesverbs:- get- list- watch
---
apiVersion: rbac.authorization.k8s.io/v1
kind: RoleBinding
metadata:labels:k8s-app: metrics-servername: metrics-server-auth-readernamespace: kube-system
roleRef:apiGroup: rbac.authorization.k8s.iokind: Rolename: extension-apiserver-authentication-reader
subjects:- kind: ServiceAccountname: metrics-servernamespace: kube-system
---
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRoleBinding
metadata:labels:k8s-app: metrics-servername: metrics-server:system:auth-delegator
roleRef:apiGroup: rbac.authorization.k8s.iokind: ClusterRolename: system:auth-delegator
subjects:- kind: ServiceAccountname: metrics-servernamespace: kube-system
---
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRoleBinding
metadata:labels:k8s-app: metrics-servername: system:metrics-server
roleRef:apiGroup: rbac.authorization.k8s.iokind: ClusterRolename: system:metrics-server
subjects:- kind: ServiceAccountname: metrics-servernamespace: kube-system
---
apiVersion: v1
kind: Service
metadata:labels:k8s-app: metrics-servername: metrics-servernamespace: kube-system
spec:ports:- name: httpsport: 443protocol: TCPtargetPort: httpsselector:k8s-app: metrics-server
---
apiVersion: apps/v1
kind: Deployment
metadata:labels:k8s-app: metrics-servername: metrics-servernamespace: kube-system
spec:selector:matchLabels:k8s-app: metrics-serverstrategy:rollingUpdate:maxUnavailable: 0template:metadata:labels:k8s-app: metrics-serverspec:containers:- args:- --cert-dir=/tmp- --secure-port=4443- --kubelet-preferred-address-types=InternalIP,ExternalIP,Hostname- --kubelet-use-node-status-port- --metric-resolution=15s- --kubelet-insecure-tls #修改去掉证书验证image: dyrnq/metrics-server:v0.6.2 #修改官方无法下载imagePullPolicy: IfNotPresentlivenessProbe:failureThreshold: 3httpGet:path: /livezport: httpsscheme: HTTPSperiodSeconds: 10name: metrics-serverports:- containerPort: 4443name: httpsprotocol: TCPreadinessProbe:failureThreshold: 3httpGet:path: /readyzport: httpsscheme: HTTPSinitialDelaySeconds: 20periodSeconds: 10resources:requests:cpu: 100mmemory: 200MisecurityContext:allowPrivilegeEscalation: falsereadOnlyRootFilesystem: truerunAsNonRoot: truerunAsUser: 1000volumeMounts:- mountPath: /tmpname: tmp-dirhostNetwork: true #必须指定这个才行nodeSelector:kubernetes.io/os: linuxpriorityClassName: system-cluster-criticalserviceAccountName: metrics-servervolumes:- emptyDir: {}name: tmp-dir
---
apiVersion: apiregistration.k8s.io/v1
kind: APIService
metadata:labels:k8s-app: metrics-servername: v1beta1.metrics.k8s.io
spec:group: metrics.k8s.iogroupPriorityMinimum: 100insecureSkipTLSVerify: trueservice:name: metrics-servernamespace: kube-systemversion: v1beta1versionPriority: 100
$ kubectl appply -f components.yaml
2 指定内存请求和限制
官网: 为容器和 Pod 分配内存资源 | Kubernetes
为容器指定内存请求,请在容器资源清单中包含 resources:requests
字段。 同理,要指定内存限制,请包含 resources:limits
。
# nginx-memory-demo.yaml #内存资源的基本单位是字节(byte)。你可以使用这些后缀之一,将内存表示为 纯整数或定点整数:E、P、T、G、M、K、Ei、Pi、Ti、Gi、Mi、Ki。 例如,下面是一些近似相同的值:128974848, 129e6, 129M, 123Mi
apiVersion: v1
kind: Pod
metadata:name: nginx-memory-demo
spec:containers:- name: nginx-memory-demoimage: nginx:1.19resources:requests:memory: "100Mi" limits:memory: "200Mi"
-
查看容器内存使用情况
$ kubectl get pod nginx-memory-demo --output=yaml
-
查看容器正在使用内存情况
$ kubectl top pod nginx-memory-demo
-
内存请求和限制的目的
通过为集群中运行的容器配置内存请求和限制,你可以有效利用集群节点上可用的内存资源。 通过将 Pod 的内存请求保持在较低水平,你可以更好地安排 Pod 调度。 通过让内存限制大于内存请求,你可以完成两件事:
-
Pod 可以进行一些突发活动,从而更好的利用可用内存。
-
Pod 在突发活动期间,可使用的内存被限制为合理的数量。
-
-
没有指定内存限制
如果你没有为一个容器指定内存限制,则自动遵循以下情况之一:
-
容器可无限制地使用内存。容器可以使用其所在节点所有的可用内存, 进而可能导致该节点调用 OOM Killer。 此外,如果发生 OOM Kill,没有资源限制的容器将被杀掉的可行性更大。
-
运行的容器所在命名空间有默认的内存限制,那么该容器会被自动分配默认限制。
-
3 指定 CPU 请求和限制
官网: 为容器和 Pods 分配 CPU 资源 | Kubernetes
为容器指定 CPU 请求,请在容器资源清单中包含 resources: requests
字段。 要指定 CPU 限制,请包含 resources:limits
。
# nginx-cpu-demo.yaml #CPU 资源以 CPU 单位度量。小数值是可以使用的。一个请求 0.5 CPU 的容器保证会获得请求 1 个 CPU 的容器的 CPU 的一半。 你可以使用后缀 m 表示毫。例如 100m CPU、100 milliCPU 和 0.1 CPU 都相同。 CPU 请求只能使用绝对数量,而不是相对数量。0.1 在单核、双核或 48 核计算机上的 CPU 数量值是一样的。
apiVersion: v1
kind: Pod
metadata:name: nginx-cpu-demo
spec:containers:- name: nginx-cpu-demoimage: nginx:1.19resources:limits:cpu: "1"requests:cpu: "0.5"
-
显示 pod 详细信息
$ kubectl get pod nginx-cpu-demo --output=yaml
-
显示 pod 运行指标
$ kubectl top pod nginx-cpu-demo
-
CPU 请求和限制的初衷
通过配置你的集群中运行的容器的 CPU 请求和限制,你可以有效利用集群上可用的 CPU 资源。 通过将 Pod CPU 请求保持在较低水平,可以使 Pod 更有机会被调度。 通过使 CPU 限制大于 CPU 请求,你可以完成两件事:
-
Pod 可能会有突发性的活动,它可以利用碰巧可用的 CPU 资源。
-
Pod 在突发负载期间可以使用的 CPU 资源数量仍被限制为合理的数量。
-
-
如果不指定 CPU 限制
如果你没有为容器指定 CPU 限制,则会发生以下情况之一:
-
容器在可以使用的 CPU 资源上没有上限。因而可以使用所在节点上所有的可用 CPU 资源。
-
容器在具有默认 CPU 限制的名字空间中运行,系统会自动为容器设置默认限制。
-
-
如果你设置了 CPU 限制但未设置 CPU 请求
如果你为容器指定了 CPU 限制值但未为其设置 CPU 请求,Kubernetes 会自动为其 设置与 CPU 限制相同的 CPU 请求值。类似的,如果容器设置了内存限制值但未设置 内存请求值,Kubernetes 也会为其设置与内存限制值相同的内存请求。