【数学】概率论与数理统计(五)

文章目录

    • @[toc]
  • 二维随机向量及其分布
    • 随机向量
    • 离散型随机向量的概率分布律
      • 性质
      • 示例
        • 问题
        • 解答
    • 连续型随机向量的概率密度函数
    • 随机向量的分布函数
      • 性质
      • 连续型随机向量
        • 均匀分布
  • 边缘分布
    • 边缘概率分布律
    • 边缘概率密度函数
      • 二维正态分布
        • 示例
          • 问题
          • 解答
    • 边缘分布函数

二维随机向量及其分布


随机向量

  • 一般地,称 n n n个随机变量的整体 X = ( X 1 , X 2 , ⋯ , X n ) X = (X_{1}, X_{2}, \cdots, X_{n}) X=(X1,X2,,Xn) n n n维随机向量

离散型随机向量的概率分布律

  • 设二维离散型随机向量 ( X , Y ) (X, Y) (X,Y)的所有可能取值的集合为 G = { ( x i , y j ) , i , j = 1 , 2 , ⋯ } G = \set{(x_{i}, y_{j}) , i, j = 1, 2, \cdots} G={(xi,yj),i,j=1,2,},并记 ( X , Y ) (X, Y) (X,Y)取各个可能取值的概率为 p i j = P { X = x i , Y = y j } , i , j = 1 , 2 , ⋯ p_{ij} = P\set{X = x_{i} , Y = y_{j}} , i, j = 1, 2, \cdots pij=P{X=xi,Y=yj},i,j=1,2,,称为二维离散型随机向量 ( X , Y ) (X, Y) (X,Y)的概率分布律,或称为 X X X Y Y Y的联合分布律

1

性质

  • p i j ≥ 0 ( i , j = 1 , 2 , ⋯ ) p_{ij} \geq 0 (i, j = 1, 2, \cdots) pij0(i,j=1,2,)

  • ∑ i ∑ j p i j = 1 \sum\limits_{i}\sum\limits_{j}{p_{ij}} = 1 ijpij=1

  • 满足上述 2 2 2个性质的数集 { p i j , i , j = 1 , 2 , ⋯ } \set{p_{ij} , i, j = 1, 2, \cdots} {pij,i,j=1,2,}必可构成某二维离散型随机向量的一个分布律

示例

问题
  • 某盒内放有 12 12 12个大小相同的球,其中 5 5 5个红球, 4 4 4个白球, 3 3 3个黑球,第一次随机地摸出 2 2 2个球,观察后不放回,第二次再取出 3 3 3个球,以 X i X_{i} Xi表示第 i i i次取到红球的数目, i = 1 , 2 i = 1, 2 i=1,2,求 ( X 1 , X 2 ) (X_{1}, X_{2}) (X1,X2)的分布律
解答
  • P { X 1 = i , X 2 = j } = P { X 1 = i } P { X 2 = j ∣ X 1 = i } = C 5 i C 7 2 − i C 12 2 × C 5 − i j C 5 + i 3 − j C 10 3 ( i = 0 , 1 , 2 , j = 0 , 1 , 2 , 3 ) P\set{X_{1} = i , X_{2} = j} = P\set{X_{1} = i} P\set{X_{2} = j | X_{1} = i} = \frac{C_{5}^{i} C_{7}^{2 - i}}{C_{12}^{2}} \times \frac{C_{5 - i}^{j} C_{5 + i}^{3 - j}}{C_{10}^{3}} (i = 0, 1, 2 , j = 0, 1, 2, 3) P{X1=i,X2=j}=P{X1=i}P{X2=jX1=i}=C122C5iC72i×C103C5ijC5+i3j(i=0,1,2,j=0,1,2,3)

连续型随机向量的概率密度函数

  • 设二维随机向量 ( X , Y ) (X, Y) (X,Y),若存在非负可积函数 f ( x , y ) ( − ∞ < x , y < + ∞ ) f(x, y) (- \infty < x, y < + \infty) f(x,y)(<x,y<+),使得对任意实数对 a 1 ≤ b 1 a_{1} \leq b_{1} a1b1 a 2 ≤ b 2 a_{2} \leq b_{2} a2b2都有 P { a 1 ≤ X ≤ b 1 , a 2 ≤ Y ≤ b 2 } = ∫ a 1 b 1 ∫ a 2 b 2 f ( x , y ) d x d y P\set{a_{1} \leq X \leq b_{1} , a_{2} \leq Y \leq b_{2}} = \int_{a_{1}}^{b_{1}}\int_{a_{2}}^{b_{2}}{f(x, y) dx dy} P{a1Xb1,a2Yb2}=a1b1a2b2f(x,y)dxdy,则称 ( X , Y ) (X, Y) (X,Y)为二维连续型随机向量,称 f ( x , y ) f(x, y) f(x,y) ( X , Y ) (X, Y) (X,Y)的概率密度函数或 X X X Y Y Y的联合概率密度函数,简称联合概率密度

随机向量的分布函数

  • ( X , Y ) (X, Y) (X,Y)是二维随机向量,对于任意实数 x x x y y y,称二元函数 F ( x , y ) = P { X ≤ x , Y ≤ y } F(x, y) = P\set{X \leq x , Y \leq y} F(x,y)=P{Xx,Yy}为二维随机向量 ( X , Y ) (X, Y) (X,Y)的分布函数,或随机变量 X X X Y Y Y的联合分布函数
  • 对于任意的实数 x 1 x_{1} x1 x 2 x_{2} x2 y 1 y_{1} y1 y 2 y_{2} y2 x 1 < x 2 x_{1} < x_{2} x1<x2 y 1 < y 2 y_{1} < y_{2} y1<y2随机点 ( X , Y ) (X, Y) (X,Y)落入矩形区域 G = { ( X , Y ) ∣ x 1 < X ≤ x 2 , y 1 < Y ≤ y 2 } G = \set{(X, Y) | x_{1} < X \leq x_{2} , y_{1} < Y \leq y_{2}} G={(X,Y)x1<Xx2,y1<Yy2}内的概率可由分布函数表示为 P { x 1 < X ≤ x 2 , y 1 < Y ≤ y 2 } = F ( x 2 , y 2 ) − F ( x 2 , y 1 ) − F ( x 1 , y 2 ) + F ( x 1 , y 1 ) P\set{x_{1} < X \leq x_{2} , y_{1} < Y \leq y_{2}} = F(x_{2}, y_{2}) - F(x_{2}, y_{1}) - F(x_{1}, y_{2}) + F(x_{1}, y_{1}) P{x1<Xx2,y1<Yy2}=F(x2,y2)F(x2,y1)F(x1,y2)+F(x1,y1)

性质

  • F ( x , y ) F(x, y) F(x,y)对每个自变量是单调不减函数,即对任意固定的 y y y,若 x 1 < x 2 x_{1} < x_{2} x1<x2,则 F ( x 1 , y ) ≤ F ( x 2 , y ) F(x_{1}, y) \leq F(x_{2}, y) F(x1,y)F(x2,y)

  • F ( − ∞ , y ) = lim ⁡ x → − ∞ F ( x , y ) = 0 F(- \infty, y) = \lim\limits_{x \rightarrow - \infty}{F(x, y)} = 0 F(,y)=xlimF(x,y)=0

  • F ( x , y ) F(x, y) F(x,y)对每个自变量都是右连续的,即 F ( x + 0 , y ) = F ( x , y ) F(x + 0, y) = F(x, y) F(x+0,y)=F(x,y) F ( x , y + 0 ) = F ( x , y ) F(x, y + 0) = F(x, y) F(x,y+0)=F(x,y)

  • 对于任意的 ( x 1 , y 1 ) (x_{1}, y_{1}) (x1,y1) ( x 2 , y 2 ) (x_{2}, y_{2}) (x2,y2),若 x 1 < x 2 x_{1} < x_{2} x1<x2 y 1 < y 2 y_{1} < y_{2} y1<y2,则 F ( x 2 , y 2 ) − F ( x 2 , y 1 ) − F ( x 1 , y 2 ) + F ( x 1 , y 1 ) ≥ 0 F(x_{2}, y_{2}) - F(x_{2}, y_{1}) - F(x_{1}, y_{2}) + F(x_{1}, y_{1}) \geq 0 F(x2,y2)F(x2,y1)F(x1,y2)+F(x1,y1)0

连续型随机向量

  • 对于二维连续型随机向量 ( X , Y ) (X, Y) (X,Y),可以证明,若 D D D x O y xOy xOy平面上一个可度量的平面区域,则有 P { ( X , Y ) ∈ D } = ∬ D f ( x , y ) d x d y P\set{(X, Y) \in D} = \iint\limits_{D}{f(x, y) dx dy} P{(X,Y)D}=Df(x,y)dxdy

  • 若概率密度 f ( x , y ) f(x, y) f(x,y)在点 ( x , y ) (x, y) (x,y)处连续,则有 ∂ 2 F ( x , y ) ∂ x ∂ y = f ( x , y ) \frac{\partial^{2}{F(x, y)}}{\partial{x} \partial{y}} = f(x, y) xy2F(x,y)=f(x,y)

均匀分布
  • 设二维随机向量 ( X , Y ) (X, Y) (X,Y)的概率密度为

f ( x , y ) = { 1 S D , ( x , y ) ∈ D 0 , ( x , y ) ∉ D f(x, y) = \begin{cases} \cfrac{1}{S_{D}} , & (x, y) \in D \\ 0 , & (x, y) \notin D \end{cases} f(x,y)= SD1,0,(x,y)D(x,y)/D

  • 则称 ( X , Y ) (X, Y) (X,Y)服从区域 D D D上的均匀分布

边缘分布


边缘概率分布律

  • 二维离散型随机向量 ( X , Y ) (X, Y) (X,Y)的两个分量 X X X Y Y Y的概率分布律分别称为随机向量 ( X , Y ) (X, Y) (X,Y)关于 X X X Y Y Y的边缘概率分布律

  • p i ⋅ = P { X = x i } = ∑ j p i j ( i = 1 , 2 , ⋯ ) p_{i \cdot} = P\set{X = x_{i}} = \sum\limits_{j}{p_{ij}} (i = 1, 2, \cdots) pi=P{X=xi}=jpij(i=1,2,)

  • p ⋅ j = P { Y = y j } = ∑ i p i j ( j = 1 , 2 , ⋯ ) p_{\cdot j} = P\set{Y = y_{j}} = \sum\limits_{i}{p_{ij}} (j = 1, 2, \cdots) pj=P{Y=yj}=ipij(j=1,2,)

  • 由联合分布律可以唯一确定边缘分布律,反之则不然


边缘概率密度函数

  • 二维连续型随机向量 ( X , Y ) (X, Y) (X,Y)关于其分量 X X X Y Y Y的概率密度分别记为 f X ( x ) f_{X}(x) fX(x) f Y ( y ) f_{Y}(y) fY(y),分别称 f X ( x ) f_{X}(x) fX(x) f Y ( y ) f_{Y}(y) fY(y) ( X , Y ) (X, Y) (X,Y)关于 X X X Y Y Y的边缘概率密度函数,简称边缘概率密度

  • f X ( x ) = ∫ − ∞ + ∞ f ( x , y ) d y f_{X}(x) = \int_{- \infty}^{+ \infty}{f(x, y) dy} fX(x)=+f(x,y)dy

  • f Y ( y ) = ∫ − ∞ + ∞ f ( x , y ) d x f_{Y}(y) = \int_{- \infty}^{+ \infty}{f(x, y) dx} fY(y)=+f(x,y)dx

二维正态分布

  • 若二维连续型随机向量 ( X , Y ) (X, Y) (X,Y)的概率密度为

f ( x , y ) = 1 2 π σ 1 σ 2 1 − ρ 2 exp ⁡ { − 1 2 ( 1 − ρ 2 ) [ ( x − μ 1 ) 2 σ 1 2 − 2 ρ ( x − μ 1 ) ( y − μ 2 ) σ 1 σ 2 + ( y − μ 2 ) 2 σ 2 2 ] } ( − ∞ < x < + ∞ , − ∞ < y < + ∞ ) f(x, y) = \cfrac{1}{2 \pi \sigma_{1} \sigma_{2} \sqrt{1 - \rho^{2}}} \exp\left\{- \cfrac{1}{2 (1 - \rho^{2})} \left[\cfrac{(x - \mu_{1})^{2}}{\sigma_{1}^{2}} - 2 \rho \cfrac{(x - \mu_{1}) (y - \mu_{2})}{\sigma_{1} \sigma_{2}} + \cfrac{(y - \mu_{2})^{2}}{\sigma_{2}^{2}}\right]\right\} (- \infty < x < + \infty , - \infty < y < + \infty) f(x,y)=2πσ1σ21ρ2 1exp{2(1ρ2)1[σ12(xμ1)22ρσ1σ2(xμ1)(yμ2)+σ22(yμ2)2]}(<x<+,<y<+)

  • 其中 μ 1 \mu_{1} μ1 μ 2 \mu_{2} μ2 σ 1 \sigma_{1} σ1 σ 2 \sigma_{2} σ2 ρ \rho ρ均为常数,且 σ 1 > 0 \sigma_{1} > 0 σ1>0 σ 2 > 0 \sigma_{2} > 0 σ2>0 ∣ ρ ∣ < 1 |\rho| < 1 ρ<1,则称 ( X , Y ) (X, Y) (X,Y)服从参数为 μ 1 \mu_{1} μ1 μ 2 \mu_{2} μ2 σ 1 2 \sigma_{1}^{2} σ12 σ 2 2 \sigma_{2}^{2} σ22 ρ \rho ρ的二维正态分布,记为 ( X , Y ) ∼ N ( μ 1 , μ 2 , σ 1 2 , σ 2 2 , ρ ) (X, Y) \sim N(\mu_{1}, \mu_{2}, \sigma_{1}^{2}, \sigma_{2}^{2}, \rho) (X,Y)N(μ1,μ2,σ12,σ22,ρ)
示例
问题
  • 求二维正态随机向量 ( X , Y ) (X, Y) (X,Y)关于 X X X Y Y Y的边缘概率密度
解答
  • ( x − μ 1 ) 2 σ 1 2 − 2 ρ ( x − μ 1 ) ( y − μ 2 ) σ 1 σ 2 + ( y − μ 2 ) 2 σ 2 2 = ( y − μ 2 σ 2 − ρ x − μ 1 σ 1 ) 2 + ( 1 − ρ 2 ) ( x − μ 1 ) 2 σ 1 2 \frac{(x - \mu_{1})^{2}}{\sigma_{1}^{2}} - 2 \rho \frac{(x - \mu_{1}) (y - \mu_{2})}{\sigma_{1} \sigma_{2}} + \frac{(y - \mu_{2})^{2}}{\sigma_{2}^{2}} = (\frac{y - \mu_{2}}{\sigma_{2}} - \rho \frac{x - \mu_{1}}{\sigma_{1}})^{2} + (1 - \rho^{2}) \frac{(x - \mu_{1})^{2}}{\sigma_{1}^{2}} σ12(xμ1)22ρσ1σ2(xμ1)(yμ2)+σ22(yμ2)2=(σ2yμ2ρσ1xμ1)2+(1ρ2)σ12(xμ1)2

  • t = 1 1 − ρ 2 ( y − μ 2 σ 2 − ρ x − μ 1 σ 1 ) t = \frac{1}{\sqrt{1 - \rho^{2}}} (\frac{y - \mu_{2}}{\sigma_{2}} - \rho \frac{x - \mu_{1}}{\sigma_{1}}) t=1ρ2 1(σ2yμ2ρσ1xμ1) d y = σ 2 1 − ρ 2 d t dy = \sigma_{2} \sqrt{1 - \rho^{2}} dt dy=σ21ρ2 dt

f X ( x ) = ∫ − ∞ + ∞ f ( x , y ) d y = 1 2 π σ 1 σ 2 1 − ρ 2 e − ( x − μ 1 ) 2 2 σ 1 2 ∫ − ∞ + ∞ e − 1 2 ( 1 − ρ ) 2 ( y − μ 2 σ 2 − ρ x − μ 1 σ 1 ) 2 d y = 1 2 π σ 1 e − ( x − μ 1 ) 2 2 σ 1 2 ∫ − ∞ + ∞ e − t 2 2 d t = 1 2 π σ 1 e − ( x − μ 1 ) 2 2 σ 1 2 , − ∞ < x < + ∞ \begin{aligned} f_{X}(x) &= \int_{- \infty}^{+ \infty}{f(x, y) dy} \\ &= \cfrac{1}{2 \pi \sigma_{1} \sigma_{2} \sqrt{1 - \rho^{2}}} e^{- \frac{(x - \mu_{1})^{2}}{2 \sigma_{1}^{2}}} \int_{- \infty}^{+ \infty}{e^{- \frac{1}{2 (1 - \rho)^{2}} (\frac{y - \mu_{2}}{\sigma_{2}} - \rho \frac{x - \mu_{1}}{\sigma_{1}})^{2}} dy} \\ &= \cfrac{1}{2 \pi \sigma_{1}} e^{- \frac{(x - \mu_{1})^{2}}{2 \sigma_{1}^{2}}} \int_{- \infty}^{+ \infty}{e^{- \frac{t^{2}}{2}} dt} \\ &= \cfrac{1}{\sqrt{2 \pi} \sigma_{1}} e^{- \frac{(x - \mu_{1})^{2}}{2 \sigma_{1}^{2}}} , - \infty < x < + \infty \end{aligned} fX(x)=+f(x,y)dy=2πσ1σ21ρ2 1e2σ12(xμ1)2+e2(1ρ)21(σ2yμ2ρσ1xμ1)2dy=2πσ11e2σ12(xμ1)2+e2t2dt=2π σ11e2σ12(xμ1)2,<x<+

  • 由此可知,二维正态分布的随机向量 ( X , Y ) (X , Y) (X,Y)关于 X X X Y Y Y的边缘分布都是正态分布,且若 ( X , Y ) ∼ N ( μ 1 , μ 2 , σ 1 2 , σ 2 2 , ρ ) (X , Y) \sim N (\mu_{1} , \mu_{2} , \sigma_{1}^{2} , \sigma_{2}^{2} , \rho) (X,Y)N(μ1,μ2,σ12,σ22,ρ),则 X ∼ N ( μ 1 , σ 1 2 ) X \sim N (\mu_{1} , \sigma_{1}^{2}) XN(μ1,σ12) Y ∼ N ( μ 2 , σ 2 2 ) Y \sim N (\mu_{2} , \sigma_{2}^{2}) YN(μ2,σ22),由于边缘概率密度与参数 ρ \rho ρ无关,故对不同的二维正态分布,只要参数 μ 1 \mu_{1} μ1 μ 2 \mu_{2} μ2 σ 1 \sigma_{1} σ1 σ 2 \sigma_{2} σ2对应相同,那么它们的边缘分布都是相同的,这一事实表明,虽然 X X X Y Y Y的联合概率密度决定边缘密度,但反之不真

边缘分布函数

  • 二维随机向量 ( X , Y ) (X, Y) (X,Y)关于两个分量 X X X Y Y Y的分布函数分别记为 F X ( x ) F_{X}(x) FX(x) F Y ( y ) F_{Y}(y) FY(y),分别称之为随机向量 ( X , Y ) (X, Y) (X,Y)关于 X X X Y Y Y的边缘分布函数

  • F X ( x ) = P { X ≤ x } = P { X ≤ x , Y < + ∞ } = lim ⁡ y → + ∞ F ( x , y ) = F ( x , + ∞ ) = ∫ − ∞ x [ ∫ − ∞ + ∞ f ( u , y ) d y ] d u F_{X}(x) = P\set{X \leq x} = P\set{X \leq x , Y < + \infty} = \lim\limits_{y \rightarrow + \infty}{F(x, y)} = F(x, + \infty) = \int_{- \infty}^{x}{\left[\int_{- \infty}^{+ \infty}{f(u, y) dy}\right] du} FX(x)=P{Xx}=P{Xx,Y<+}=y+limF(x,y)=F(x,+)=x[+f(u,y)dy]du


本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/896.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

四 BH1750 光感驱动调试2

之前调通了用户态接口,android 使用还是不方便,要包装jni使用。 这里集成了内核 iio 驱动 ,提供 sys-fs 文件接口 可供固件以及 ANDROID 应用层使用 一 驱动集成 : 1.1 dts 修改 修改文件 : kernel/arch/arm64/boot/dts/rockchip/rp-rk3568.dts 在 i2c5 增加设备,如…

Redis持久化双雄

Redis持久化 Redis 的持久化是指将内存中的数据保存到硬盘&#xff0c;以防止服务器宕机导致数据丢失的机制。 redis 提供了两种持久化的方式&#xff0c;分别是RDB&#xff08;Redis DataBase&#xff09;和AOF&#xff08;Append Only File&#xff09;。 RDB&#xff0c;简…

工业视觉2-相机选型

工业视觉2-相机选型 一、按芯片类型二、按传感器结构特征三、按扫描方式四、按分辨率大小五、按输出信号六、按输出色彩接口类型 这张图片对工业相机的分类方式进行了总结&#xff0c;具体如下&#xff1a; 一、按芯片类型 CCD相机&#xff1a;采用电荷耦合器件&#xff08;CC…

数字证书管理服务

阿里云数字证书管理服务&#xff08;Aliyun Certificate Management Service, ACM&#xff09;是一种云端服务&#xff0c;专门用于帮助企业管理和颁发数字证书。数字证书是网络安全中的重要组成部分&#xff0c;它可以确保通信的安全性、身份认证以及数据的完整性。通过阿里云…

《跟我学Spring Boot开发》系列文章索引❤(2025.01.09更新)

章节文章名备注第1节Spring Boot&#xff08;1&#xff09;基于Eclipse搭建Spring Boot开发环境环境搭建第2节Spring Boot&#xff08;2&#xff09;解决Maven下载依赖缓慢的问题给火车头提提速第3节Spring Boot&#xff08;3&#xff09;教你手工搭建Spring Boot项目纯手工玩法…

Zookeeper概览

个人博客地址&#xff1a;Zookeeper概览 | 一张假钞的真实世界 设计目标 简单的&#xff1a;方便使用以实现复杂的业务应用。复制式的&#xff1a;跟Zookeeper协调的分布式进程一样&#xff0c;它也是在一组服务器上复制的。集群的每个节点间互相知道。它们维护一个状态数据在…

播放音频文件同步音频文本

播放音频同步音频文本 对应单个文本高亮显示 使用audio音频文件对应音频文本资源 音频文本内容&#xff08;Json&#xff09; [{"end": 4875,"index": 0,"speaker": 0,"start": 30,"text": "70号二啊,","tex…

React中ElementFiber对象、WorkInProgress双缓存、ReconcileRenderCommit、第一次挂载过程详解

基础概念 Element对象与Fiber对象 Element对象与Fiber对象 Element 对象 定义 React 的 Element 对象是一个描述用户界面&#xff08;UI&#xff09;的普通 JavaScript 对象&#xff0c;通常由 React.createElement 或 JSX 语法生成。 作用 它是 React 应用中的一种描述 …

【airtest】自动化入门教程Poco元素定位

1. 前言 本文将详细讲解Poco控件定位的各种方式&#xff0c;利用这些方法可以帮助我们编写出目标控件的定位脚本。我们在IDE录制的poco脚本&#xff0c;常见的都是类似 poco(“star_single”).click()这样的脚本&#xff0c;其中 poco(“star_single”) 这块就属于Poco控件定位…

2025年01月13日Github流行趋势

1. 项目名称&#xff1a;Jobs_Applier_AI_Agent 项目地址url&#xff1a;https://github.com/feder-cr/Jobs_Applier_AI_Agent项目语言&#xff1a;Python历史star数&#xff1a;25929今日star数&#xff1a;401项目维护者&#xff1a;surapuramakhil, feder-cr, cjbbb, sarob…

[免费]SpringBoot+Vue新能源汽车充电桩管理系统【论文+源码+SQL脚本】

大家好&#xff0c;我是java1234_小锋老师&#xff0c;看到一个不错的SpringBootVue新能源汽车充电桩管理系统&#xff0c;分享下哈。 项目视频演示 【免费】SpringBootVue新能源汽车充电桩管理系统 Java毕业设计_哔哩哔哩_bilibili 项目介绍 随着信息化时代的到来&#xff0…

【C++】字符串中的 insert 方法深层分析

博客主页&#xff1a; [小ᶻ☡꙳ᵃⁱᵍᶜ꙳] 本文专栏: C 文章目录 &#x1f4af;前言&#x1f4af;一、基础知识&#xff1a;insert 方法概述功能描述函数原原型基本规则 &#x1f4af;二、例子解析例子 1&#xff1a;插入一个 std::string分析 例子 2&#xff1a;插入一个…

G-Star Landscape 2.0 重磅发布,助力开源生态再升级

近日&#xff0c;备受行业瞩目的 G-Star Landscape 迎来了其 2.0 版本的发布&#xff0c;这一成果标志着 GitCode 在开源生态建设方面又取得了重要进展。 G-Star Landscape仓库链接&#xff1a; https://gitcode.com/GitCode-official-team/G-Star-landscape 2024 GitCode 开…

Sui Move:基本概览一

Module (模块) Move 代码被组织成模块, 可以把一个模块看成是区块链上的一个智能合约 可以通过调用这些模块中的函数来与模块进行交互&#xff0c;可以通过事务或其他 Move 代码来实现, 事务将被发送到并由Sui区块链进行处理&#xff0c;一旦执行完成&#xff0c;结果的更改将…

不同方式获取音频时长 - python 实现

DataBall 助力快速掌握数据集的信息和使用方式&#xff0c;会员享有 百种数据集&#xff0c;持续增加中。 需要更多数据资源和技术解决方案&#xff0c;知识星球&#xff1a; “DataBall - X 数据球(free)” -------------------------------------------------------------…

25年无人机行业资讯 | 1.1 - 1.5

25年无人机行业资讯 | 1.1 - 1.5 中央党报《经济日报》刊文&#xff1a;低空经济蓄势待发&#xff0c;高质量发展需的平衡三大关系 据新华网消息&#xff0c;2025年1月3日&#xff0c;中央党报《经济日报》发表文章指出&#xff0c;随着国家发展改革委低空经济发展司的成立&a…

frp内网穿透

frp CS搭建socks隧道 kali当作客户端&#xff0c;vps当作服务端&#xff0c;webshell机器上传后门&#xff0c;CS上线&#xff0c;使用CS自带socks搭建隧道 选择socks代理 服务端启动&#xff1a;frps -c frpssocks.toml serverAddr "47.104.216.23" serverPort…

【JVM-2.2】使用JConsole监控和管理Java应用程序:从入门到精通

在Java应用程序的开发和运维过程中&#xff0c;监控和管理应用程序的性能和资源使用情况是非常重要的。JConsole是Java Development Kit&#xff08;JDK&#xff09;自带的一款图形化监控工具&#xff0c;它可以帮助开发者实时监控Java应用程序的内存、线程、类加载以及垃圾回收…

Linux之读者写者模型与特殊锁的学习

目录 读者写者模型 特殊锁 悲观锁 自旋锁 在前几期&#xff0c;我们学习了多线程的生产者和消费者模型&#xff0c;生产者和消费者模型中&#xff0c;有三种关系&#xff0c;两个角色&#xff0c;一个场所&#xff0c;那么读者写者模型和生产者消费者模型有什么关联吗&…

MACPA:fMRI连接性分析的新工具

摘要 不同脑区的共同激活为它们之间的功能交互或连接提供了一个有价值的衡量指标。元分析连接模型(MACM)是一种经过充分验证的研究某一特定区域共激活模式的方法&#xff0c;该方法对基于任务的功能磁共振成像(task-fMRI)数据进行种子点(seed-based)元分析。虽然MACM是一种强大…