时序预测 | MATLAB实现CNN-BiGRU-Attention时间序列预测

时序预测 | MATLAB实现CNN-BiGRU-Attention时间序列预测

目录

    • 时序预测 | MATLAB实现CNN-BiGRU-Attention时间序列预测
      • 预测效果
      • 基本介绍
      • 模型描述
      • 程序设计
      • 参考资料

预测效果

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

基本介绍

MATLAB实现CNN-BiGRU-Attention时间序列预测,CNN-BiGRU-Attention结合注意力机制时间序列预测。

模型描述

Matlab实现CNN-BiGRU-Attention时间序列预测
1.data为数据集,格式为excel,单变量时间序列预测;
2.CNN_BiGRU_AttentionTS.m为主程序文件,运行即可;
3.命令窗口输出R2、MAE、MAPE、MSE和MBE;
注意程序和数据放在一个文件夹,运行环境为Matlab2021b及以上。

注意程序和数据放在一个文件夹,运行环境为Matlab2021b及以上。
4.注意力机制模块:
SEBlock(Squeeze-and-Excitation Block)是一种聚焦于通道维度而提出一种新的结构单元,为模型添加了通道注意力机制,该机制通过添加各个特征通道的重要程度的权重,针对不同的任务增强或者抑制对应的通道,以此来提取有用的特征。该模块的内部操作流程如图,总体分为三步:首先是Squeeze 压缩操作,对空间维度的特征进行压缩,保持特征通道数量不变。融合全局信息即全局池化,并将每个二维特征通道转换为实数。实数计算公式如公式所示。该实数由k个通道得到的特征之和除以空间维度的值而得,空间维数为H*W。其次是Excitation激励操作,它由两层全连接层和Sigmoid函数组成。如公式所示,s为激励操作的输出,σ为激活函数sigmoid,W2和W1分别是两个完全连接层的相应参数,δ是激活函数ReLU,对特征先降维再升维。最后是Reweight操作,对之前的输入特征进行逐通道加权,完成原始特征在各通道上的重新分配。

1
2

程序设计

  • 完整程序和数据获取方式1:同等价值程序兑换;
  • 完整程序和数据获取方式2:私信博主回复MATLAB实现CNN-BiGRU-Attention时间序列预测获取。
 gruLayer(32,'OutputMode',"last",'Name','bil4','RecurrentWeightsInitializer','He','InputWeightsInitializer','He')dropoutLayer(0.25,'Name','drop2')% 全连接层fullyConnectedLayer(numResponses,'Name','fc')regressionLayer('Name','output')    ];layers = layerGraph(layers);layers = connectLayers(layers,'fold/miniBatchSize','unfold/miniBatchSize');
%-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
%% 训练选项
if gpuDeviceCount>0mydevice = 'gpu';
elsemydevice = 'cpu';
endoptions = trainingOptions('adam', ...'MaxEpochs',MaxEpochs, ...'MiniBatchSize',MiniBatchSize, ...'GradientThreshold',1, ...'InitialLearnRate',learningrate, ...'LearnRateSchedule','piecewise', ...'LearnRateDropPeriod',56, ...'LearnRateDropFactor',0.25, ...'L2Regularization',1e-3,...'GradientDecayFactor',0.95,...'Verbose',false, ...'Shuffle',"every-epoch",...'ExecutionEnvironment',mydevice,...'Plots','training-progress');
%% 模型训练
rng(0);
net = trainNetwork(XrTrain,YrTrain,layers,options);
%-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
%% 测试数据预测
% 测试集预测
YPred = predict(net,XrTest,"ExecutionEnvironment",mydevice,"MiniBatchSize",numFeatures);
YPred = YPred';
% 数据反归一化
YPred = sig.*YPred + mu;
YTest = sig.*YTest + mu;
————————————————
版权声明:本文为CSDN博主「机器学习之心」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。

参考资料

[1] http://t.csdn.cn/pCWSp
[2] https://download.csdn.net/download/kjm13182345320/87568090?spm=1001.2014.3001.5501
[3] https://blog.csdn.net/kjm13182345320/article/details/129433463?spm=1001.2014.3001.5501

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/89955.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

机器学习笔记之优化算法(十二)梯度下降法:凸函数VS强凸函数

机器学习笔记之优化算法——梯度下降法:凸函数VS强凸函数 引言凸函数:凸函数的定义与判定条件凸函数的一阶条件凸函数的梯度单调性凸函数的二阶条件 强凸函数强凸函数的定义强凸函数的判定条件强凸函数的一阶条件强凸函数的梯度单调性强突函数的二阶条件…

【从零学习python 】21.Python中的元组与字典

文章目录 元组一、访问元组二、修改元组三、count, index四、定义只有一个数据的元组五、交换两个变量的值 字典介绍一、列表的缺点二、字典的使用进阶案例 元组 Python的元组与列表类似,不同之处在于元组的元素不能修改。元组使用小括号,列表使用方括号…

C++初阶之一篇文章教会你queue和priority_queue(理解使用和模拟实现)

queue和priority_queue(理解使用和模拟实现) 什么是queuequeue的使用1.queue构造函数2.empty()3.size()4.front()5.back();6.push7.emplace8.pop()9.swap queue模拟实现什么是priority_queuepriority_queue的使用1.priority_queue构造函数1.1 模板参数 C…

论文阅读 RRNet: A Hybrid Detector for Object Detection in Drone-captured Images

文章目录 RRNet: A Hybrid Detector for Object Detection in Drone-captured ImagesAbstract1. Introduction2. Related work3. AdaResampling4. Re-Regression Net4.1. Coarse detector4.2. Re-Regression 5. Experiments5.1. Data augmentation5.2. Network details5.3. Tra…

DP(区间DP)

目录 石子合并 合并果子(贪心 Huffman树) 环形石子合并 石子合并 设有 N 堆石子排成一排,其编号为 1,2,3,…,N。 每堆石子有一定的质量,可以用一个整数来描述,现在要将这 N 堆石子合并成为一堆。 每次只能合并相邻…

全文检索与日志管理 Elasticsearch(上)

一、Elasticsearch介绍 1.1 全文检索索引 Elasticsearch是一个全文检索服务器,全文检索是一种非结构化数据的搜索方式。 那么什么是结构化数据和非结构化数据呢? 结构化数据:指具有固定格式固定长度的数据,如数据库中的字段。 …

如何有效开展网络安全事件调查工作

网络安全事件调查是现代企业网络安全体系建设的关键组成部分。为了防止网络攻击,仅仅关注于安全工具的应用效果远远不够,因为安全事件一直都在发生。安全团队只有充分了解攻击者的行踪和攻击路径,才能更好地防范更多攻击时间的发生。 做好网…

基于Python爬虫+词云图+情感分析对某东上完美日记的用户评论分析

🤵‍♂️ 个人主页:艾派森的个人主页 ✍🏻作者简介:Python学习者 🐋 希望大家多多支持,我们一起进步!😄 如果文章对你有帮助的话, 欢迎评论 💬点赞&#x1f4…

【go语言学习笔记】05 Go 语言实战

文章目录 一、 RESTful API 服务1. RESTful API 定义1.1 HTTP Method1.2 RESTful API 规范 2. RESTful API 风格示例3. RESTful JSON API4. Gin 框架4.1 导入 Gin 框架4.2 使用 Gin 框架4.2.1 获取特定的用户(GET)4.2.2 新增一个用户(POST&am…

ElasticSearch安装与介绍

Elastic Stack简介 如果没有听说过Elastic Stack,那你一定听说过ELK,实际上ELK是三款软件的简称,分别是Elasticsearch、 Logstash、Kibana组成,在发展的过程中,又有新成员Beats的加入,所以就形成了Elastic…

9月大理,Move HackerHouse,成为全球数字游民的第一站

🚀世界各地的 hacker 们!即日起,我们正式向您发出 co-buiding & co-living 的邀请! 9.3日至9.24日,为期3周的 Move 主题Antalpha HackerHouse 将坐落于大理,邀请所有 Web3 开发者一起探索 Move 生态发…

基于Selenium模块实现无界面模式 执行JS脚本

此篇文章主要介绍如何使用 Selenium 模块实现 无界面模式 & 执行JS脚本(把滚动条拉到底部),并以具体的示例进行展示。 1、Selenium 设置无界面模式 创建浏览器对象之前,创建 options 功能对象 :options webdriver.ChromeOptions() 添加…

微服务系列(2)--注册中心

在博文:微服务系列(1)里我们提到过注册中心的概念,简单来说微服务注册中心是一个用于存储和管理微服务实例信息的组件,它提供了服务注册、服务发现、服务健康检查等功能,以确保微服务之间的稳定通信。在微服务架构中,各…

Python 图形界面框架TkInter(第八篇:理解pack布局)

前言 tkinter图形用户界面框架提供了3种布局方式,分别是 1、pack 2、grid 3、place 介绍下pack布局方式,这是我们最常用的布局方式,理解了pack布局,绝大多数需求都能满足。 第一次使用pack() import …

6. CSS(三)

目录 一、盒子模型 (一)网页布局的本质 (二)盒子模型组成 (三)边框(border) (四)表格的细线边框 (五)内边距(padding…

Android多屏幕支持-Android12

Android多屏幕支持-Android12 1、概览及相关文章2、屏幕窗口配置2.1 配置xml文件2.2 DisplayInfo#uniqueId 屏幕标识2.3 adb查看信息 3、配置文件解析3.1 xml字段读取3.2 简要时序图 4、每屏幕焦点 android12-release 1、概览及相关文章 AOSP > 文档 > 心主题 > 多屏…

【数据结构】栈与队列

1 栈 1.1 栈的概念及结构 栈:一种特殊的线性表,其只允许在固定的一端进行插入和删除元素操作。进行数据插入和删除操作的一端称为栈顶,另一端称为栈底。栈中的数据元素遵守后进先出 LIFO (Last In First Out) 的原则。 压栈:栈…

【Git】

Git 简介下载安装验证安装 简介 Git 是一个分布式版本控制系统,用于跟踪和管理软件开发项目的变化。它可以有效地记录文件的修改历史、协调多人协作开发、解决代码冲突,并提供了分支管理、版本回滚等功能,使团队能够更好地合作开发软件项目。…

Android实现超出固定行数折叠文字“查看全文“、“收起全文“

先上效果图 分析问题 网上有很多关于这个的代码,实现都过于复杂了,github上甚至还看到一篇文章600多行代码,结果一跑起来全是bug。还是自己写吧!!! 如果我们需要换行的"查看全文"、"收起全…

8.14 作业 ARM

.text .globl _gcd_gcd:mov r0,#9mov r1,#15cmp r0,r1 比较r0和r1寄存器中的值beq stopsubhi r0,r0,r1subcc r1,r1,r0stop:b stop .end用for循环实现1~100之间和: .text .globl _start_start:mov r0,#0 总和mov r1,#1 从1开始mov r2,#100 到100结束bl add_loopa…