ElasticSearch安装与介绍

Elastic Stack简介

如果没有听说过Elastic Stack,那你一定听说过ELK,实际上ELK是三款软件的简称,分别是Elasticsearch、 Logstash、Kibana组成,在发展的过程中,又有新成员Beats的加入,所以就形成了Elastic Stack。所以说,ELK是旧的称呼,Elastic Stack是新的名字。

 

全系的Elastic Stack技术栈包括:

 

Elasticsearch

Elasticsearch 基于java,是个开源分布式搜索引擎,它的特点有:分布式,零配置,自动发现,索引自动分片,索引副本机制,restful风格接口,多数据源,自动搜索负载等。

Logstash

Logstash 基于java,是一个开源的用于收集,分析和存储日志的工具。

Kibana

Kibana 基于nodejs,也是一个开源和免费的工具,Kibana可以为 Logstash 和 ElasticSearch 提供的日志分析友好的Web 界面,可以汇总、分析和搜索重要数据日志。

Beats

Beats是elastic公司开源的一款采集系统监控数据的代理agent,是在被监控服务器上以客户端形式运行的数据收集器的统称,可以直接把数据发送给Elasticsearch或者通过Logstash发送给Elasticsearch,然后进行后续的数据分析活动。Beats由如下组成:

  • Packetbeat:是一个网络数据包分析器,用于监控、收集网络流量信息,Packetbeat嗅探服务器之间的流量,解析应用层协议,并关联到消息的处理,其支 持ICMP (v4 and v6)、DNS、HTTP、Mysql、PostgreSQL、Redis、MongoDB、Memcache等协议;

  • Filebeat:用于监控、收集服务器日志文件,其已取代 logstash forwarder;

  • Metricbeat:可定期获取外部系统的监控指标信息,其可以监控、收集 Apache、HAProxy、MongoDB MySQL、Nginx、PostgreSQL、Redis、System、Zookeeper等服务;

Beats和Logstash其实都可以进行数据的采集,但是目前主流的是使用Beats进行数据采集,然后使用 Logstash进行数据的分割处理等,早期没有Beats的时候,使用的就是Logstash进行数据的采集。

ElasticSearch快速入门

简介

官网:Elasticsearch Platform — Find real-time answers at scale | Elastic

选择对应版本的数据,这里我使用的是Linux来进行安装,所以就先下载好ElasticSearch的Linux安装包

拉取Docker容器

因为我们需要部署在Linux下,为了以后迁移ElasticStack环境方便,我们就使用Docker来进行部署,首先我们拉取一个带有ssh的centos docker镜像

# 拉取镜像
docker pull moxi/centos_ssh
# 制作容器
docker run --privileged -d -it -h ElasticStack --name ElasticStack -p 11122:22 -p 9200:9200 -p 5601:5601 -p 9300:9300 -v /etc/localtime:/etc/localtime:ro  moxi/centos_ssh /usr/sbin/init

然后直接远程连接11122端口即可

单机版安装

因为ElasticSearch不支持Root用户直接操作,因此我们需要创建一个elsearch用户

# 添加新用户
useradd elsearch
​
# 创建一个soft目录,存放下载的软件
mkdir /soft
​
# 进入,然后通过xftp工具,将刚刚下载的文件拖动到该目录下
cd /soft
​
# 解压缩
tar -zxvf elasticsearch-7.9.1-linux-x86_64.tar.gz
​
#重命名
mv elasticsearch-7.9.1/ elsearch

因为刚刚我们是使用root用户操作的,所以我们还需要更改一下/soft文件夹的所属,改为elsearch用户

chown elsearch:elsearch /soft/ -R

然后在切换成elsearch用户进行操作

# 切换用户
su - elsearch

然后我们就可以对我们的配置文件进行修改了

# 进入到 elsearch下的config目录
cd /soft/elsearch/config

然后找到下面的配置

#打开配置文件
vim elasticsearch.yml 
​
#设置ip地址,任意网络均可访问
network.host: 0.0.0.0 

在Elasticsearch中如果,network.host不是localhost或者127.0.0.1的话,就会认为是生产环境,会对环境的要求比较高,我们的测试环境不一定能够满足,一般情况下需要修改2处配置,如下:

# 修改jvm启动参数
vim conf/jvm.options
​
#根据自己机器情况修改
-Xms128m 
-Xmx128m

然后在修改第二处的配置,这个配置要求我们到宿主机器上来进行配置

# 到宿主机上打开文件
vim /etc/sysctl.conf
# 增加这样一条配置,一个进程在VMAs(虚拟内存区域)创建内存映射最大数量
vm.max_map_count=655360
# 让配置生效
sysctl -p

启动ElasticSearch

首先我们需要切换到 elsearch用户

su - elsearch

然后在到bin目录下,执行下面

# 进入bin目录
cd /soft/elsearch/bin
# 后台启动
./elasticsearch -d

启动成功后,访问下面的URL

http://202.193.56.222:9200/

如果出现了下面的信息,就表示已经成功启动了

 

如果你在启动的时候,遇到过问题,那么请参考下面的错误分析~

错误分析

错误情况1

如果出现下面的错误信息

java.lang.RuntimeException: can not run elasticsearch as rootat org.elasticsearch.bootstrap.Bootstrap.initializeNatives(Bootstrap.java:111)at org.elasticsearch.bootstrap.Bootstrap.setup(Bootstrap.java:178)at org.elasticsearch.bootstrap.Bootstrap.init(Bootstrap.java:393)at org.elasticsearch.bootstrap.Elasticsearch.init(Elasticsearch.java:170)at org.elasticsearch.bootstrap.Elasticsearch.execute(Elasticsearch.java:161)at org.elasticsearch.cli.EnvironmentAwareCommand.execute(EnvironmentAwareCommand.java:86)at org.elasticsearch.cli.Command.mainWithoutErrorHandling(Command.java:127)at org.elasticsearch.cli.Command.main(Command.java:90)at org.elasticsearch.bootstrap.Elasticsearch.main(Elasticsearch.java:126)at org.elasticsearch.bootstrap.Elasticsearch.main(Elasticsearch.java:92)
For complete error details, refer to the log at /soft/elsearch/logs/elasticsearch.log
[root@e588039bc613 bin]# 2020-09-22 02:59:39,537121 UTC [536] ERROR CLogger.cc@310 Cannot log to named pipe /tmp/elasticsearch-5834501324803693929/controller_log_381 as it could not be opened for writing
2020-09-22 02:59:39,537263 UTC [536] INFO  Main.cc@103 Parent process died - ML controller exiting

就说明你没有切换成 elsearch用户,因为不能使用root操作es

su - elsearch

错误情况2

[1]:max file descriptors [4096] for elasticsearch process is too low, increase to at least[65536]

解决方法:切换到root用户,编辑limits.conf添加如下内容

vi /etc/security/limits.conf
​
# ElasticSearch添加如下内容:
* soft nofile 65536
* hard nofile 131072
* soft nproc 2048
* hard nproc 4096

错误情况3

[2]: max number of threads [1024] for user [elsearch] is too low, increase to at least
[4096]

也就是最大线程数设置的太低了,需要改成4096

#解决:切换到root用户,进入limits.d目录下修改配置文件。
vi /etc/security/limits.d/90-nproc.conf
#修改如下内容:
* soft nproc 1024
#修改为
* soft nproc 4096

错误情况4

[3]: system call filters failed to install; check the logs and fix your configuration
or disable system call filters at your own risk

解决:Centos6不支持SecComp,而ES5.2.0默认bootstrap.system_call_filter为true

vim config/elasticsearch.yml
# 添加
bootstrap.system_call_filter: false
bootstrap.memory_lock: false

错误情况5

[elsearch@e588039bc613 bin]$ Exception in thread "main" org.elasticsearch.bootstrap.BootstrapException: java.nio.file.AccessDeniedException: /soft/elsearch/config/elasticsearch.keystore
Likely root cause: java.nio.file.AccessDeniedException: /soft/elsearch/config/elasticsearch.keystoreat java.base/sun.nio.fs.UnixException.translateToIOException(UnixException.java:90)at java.base/sun.nio.fs.UnixException.rethrowAsIOException(UnixException.java:111)at java.base/sun.nio.fs.UnixException.rethrowAsIOException(UnixException.java:116)at java.base/sun.nio.fs.UnixFileSystemProvider.newByteChannel(UnixFileSystemProvider.java:219)at java.base/java.nio.file.Files.newByteChannel(Files.java:375)at java.base/java.nio.file.Files.newByteChannel(Files.java:426)at org.apache.lucene.store.SimpleFSDirectory.openInput(SimpleFSDirectory.java:79)at org.elasticsearch.common.settings.KeyStoreWrapper.load(KeyStoreWrapper.java:220)at org.elasticsearch.bootstrap.Bootstrap.loadSecureSettings(Bootstrap.java:240)at org.elasticsearch.bootstrap.Bootstrap.init(Bootstrap.java:349)at org.elasticsearch.bootstrap.Elasticsearch.init(Elasticsearch.java:170)at org.elasticsearch.bootstrap.Elasticsearch.execute(Elasticsearch.java:161)at org.elasticsearch.cli.EnvironmentAwareCommand.execute(EnvironmentAwareCommand.java:86)at org.elasticsearch.cli.Command.mainWithoutErrorHandling(Command.java:127)at org.elasticsearch.cli.Command.main(Command.java:90)at org.elasticsearch.bootstrap.Elasticsearch.main(Elasticsearch.java:126)at org.elasticsearch.bootstrap.Elasticsearch.main(Elasticsearch.java:92)
​

我们通过排查,发现是因为 /soft/elsearch/config/elasticsearch.keystore 存在问题

也就是说该文件还是所属于root用户,而我们使用elsearch用户无法操作,所以需要把它变成elsearch

chown elsearch:elsearch elasticsearch.keystore

错误情况6

[1]: the default discovery settings are unsuitable for production use; at least one of [discovery.seed_hosts, discovery.seed_providers, cluster.initial_master_nodes] must be configured
ERROR: Elasticsearch did not exit normally - check the logs at /soft/elsearch/logs/elasticsearch.log

继续修改配置 elasticsearch.yaml

# 取消注释,并保留一个节点
node.name: node-1
cluster.initial_master_nodes: ["node-1"]

ElasticSearchHead可视化工具

由于ES官方没有给ES提供可视化管理工具,仅仅是提供了后台的服务,elasticsearch-head是一个为ES开发的一个页面客户端工具,其源码托管于Github,地址为 传送门

head提供了以下安装方式

  • 源码安装,通过npm run start启动(不推荐)

  • 通过docker安装(推荐)

  • 通过chrome插件安装(推荐)

  • 通过ES的plugin方式安装(不推荐)

通过Docker方式安装

#拉取镜像
docker pull mobz/elasticsearch-head:5
#创建容器
docker create --name elasticsearch-head -p 9100:9100 mobz/elasticsearch-head:5
#启动容器
docker start elasticsearch-head

通过浏览器进行访问:

 

注意: 由于前后端分离开发,所以会存在跨域问题,需要在服务端做CORS的配置,如下:

vim elasticsearch.yml
​
http.cors.enabled: true http.cors.allow-origin: "*"

通过chrome插件的方式安装不存在该问题

通过Chrome插件安装

打开chrome的应用商店,即可安装

https://chrome.google.com/webstore/detail/elasticsearch-head/ffmkiejjmecolpfloofpjologoblkegm

建议:推荐使用chrome插件的方式安装,如果网络环境不允许,就采用其它方式安装。

ElasticSearch中的基本概念

索引

  • 索引(index)是Elasticsearch对逻辑数据的逻辑存储,所以它可以分为更小的部分。

  • 可以把索引看成关系型数据库的表,索引的结构是为快速有效的全文索引准备的,特别是它不存储原始值。

  • Elasticsearch可以把索引存放在一台机器或者分散在多台服务器上,每个索引有一或多个分片(shard),每个分片可以有多个副本(replica)。

文档

  • 存储在Elasticsearch中的主要实体叫文档(document)。用关系型数据库来类比的话,一个文档相当于数据库表中的一行记录。

  • Elasticsearch和MongoDB中的文档类似,都可以有不同的结构,但Elasticsearch的文档中,相同字段必须有相同类型。

  • 文档由多个字段组成,每个字段可能多次出现在一个文档里,这样的字段叫多值字段(multivalued)。 每个字段的类型,可以是文本、数值、日期等。字段类型也可以是复杂类型,一个字段包含其他子文档或者数 组。

映射

所有文档写进索引之前都会先进行分析,如何将输入的文本分割为词条、哪些词条又会被过滤,这种行为叫做 映射(mapping)。一般由用户自己定义规则。

文档类型

  • 在Elasticsearch中,一个索引对象可以存储很多不同用途的对象。例如,一个博客应用程序可以保存文章和评 论。

  • 每个文档可以有不同的结构。

  • 不同的文档类型不能为相同的属性设置不同的类型。例如,在同一索引中的所有文档类型中,一个叫title的字段必须具有相同的类型。

RESTful API

在Elasticsearch中,提供了功能丰富的RESTful API的操作,包括基本的CRUD、创建索引、删除索引等操作。

创建非结构化索引

在Lucene中,创建索引是需要定义字段名称以及字段的类型的,在Elasticsearch中提供了非结构化的索引,就是不需要创建索引结构,即可写入数据到索引中,实际上在Elasticsearch底层会进行结构化操作,此操作对用户是透明的。

创建空索引

PUT /haoke
{"settings": {"index": {"number_of_shards": "2", #分片数"number_of_replicas": "0" #副本数}}
}

删除索引

#删除索引
DELETE /haoke
{"acknowledged": true
}

插入数据

URL规则: POST /{索引}/{类型}/{id}

POST /haoke/user/1001
#数据
{
"id":1001,
"name":"张三",
"age":20,
"sex":"男"
}

使用postman操作成功后

 

我们通过ElasticSearchHead进行数据预览就能够看到我们刚刚插入的数据了 

更新数据

在Elasticsearch中,文档数据是不为修改的,但是可以通过覆盖的方式进行更新。

PUT /haoke/user/1001
{
"id":1001,
"name":"张三",
"age":21,
"sex":"女"
}

更新结果如下:

可以看到数据已经被覆盖了。问题来了,可以局部更新吗? -- 可以的。前面不是说,文档数据不能更新吗? 其实是这样的:在内部,依然会查询到这个文档数据,然后进行覆盖操作,步骤如下:

  1. 从旧文档中检索JSON

  2. 修改它

  3. 删除旧文档

  4. 索引新文档

#注意:这里多了_update标识
POST /haoke/user/1001/_update
{
"doc":{
"age":23
}
}

删除一个文档也不会立即从磁盘上移除,它只是被标记成已删除。Elasticsearch将会在你之后添加更多索引的时候才会在后台进行删除内容的清理。【相当于批量操作】

搜索数据

根据id搜索数据

GET /haoke/user/BbPe_WcB9cFOnF3uebvr
#返回的数据如下
{"_index": "haoke","_type": "user","_id": "BbPe_WcB9cFOnF3uebvr","_version": 8,"found": true,"_source": { #原始数据在这里"id": 1002,"name": "李四","age": 40,"sex": "男"}
}

搜索全部数据

GET 1 /haoke/user/_search

注意,使用查询全部数据的时候,默认只会返回10条

关键字搜索数据

#查询年龄等于20的用户
GET /haoke/user/_search?q=age:20

结果如下:

DSL搜索

Elasticsearch提供丰富且灵活的查询语言叫做DSL查询(Query DSL),它允许你构建更加复杂、强大的查询。 DSL(Domain Specific Language特定领域语言)以JSON请求体的形式出现。

POST /haoke/user/_search
#请求体
{"query" : {"match" : { #match只是查询的一种"age" : 20}}
}

实现:查询年龄大于30岁的男性用户。

POST /haoke/user/_search
#请求数据
{"query": {"bool": {"filter": {"range": {"age": {"gt": 30}}},"must": {"match": {"sex": "男"}}}}
}

查询出来的结果

全文搜索

POST /haoke/user/_search
#请求数据
{"query": {"match": {"name": "张三 李四"}}
}

高亮显示,只需要在添加一个 highlight即可

POST /haoke/user/_search
#请求数据
{"query": {"match": {"name": "张三 李四"}}"highlight": {"fields": {"name": {}}}
}

聚合

在Elasticsearch中,支持聚合操作,类似SQL中的group by操作。

POST /haoke/user/_search
{"aggs": {"all_interests": {"terms": {"field": "age"}}}
}

结果如下,我们通过年龄进行聚合

从结果可以看出,年龄30的有2条数据,20的有一条,40的一条。

ElasticSearch核心详解

文档

在Elasticsearch中,文档以JSON格式进行存储,可以是复杂的结构,如:

{"_index": "haoke","_type": "user","_id": "1005","_version": 1,"_score": 1,"_source": {"id": 1005,"name": "孙七","age": 37,"sex": "女","card": {"card_number": "123456789"}}
}

其中,card是一个复杂对象,嵌套的Card对象

元数据(metadata)

一个文档不只有数据。它还包含了元数据(metadata)——关于文档的信息。三个必须的元数据节点是:

指定响应字段

在响应的数据中,如果我们不需要全部的字段,可以指定某些需要的字段进行返回。通过添加 _source

GET /haoke/user/1005?_source=id,name
#响应
{"_index": "haoke","_type": "user","_id": "1005","_version": 1,"found": true,"_source": {"name": "孙七","id": 1005}
}

如不需要返回元数据,仅仅返回原始数据,可以这样:

GET /haoke/1 user/1005/_source

当然,这只表示你在查询的那一刻文档不存在,但并不表示几毫秒后依旧不存在。另一个进程在这期间可能创建新文档。

批量操作

有些情况下可以通过批量操作以减少网络请求。如:批量查询、批量插入数据。

批量查询

POST /haoke/user/_mget
{"ids" : [ "1001", "1003" ]
}

结果:

如果,某一条数据不存在,不影响整体响应,需要通过found的值进行判断是否查询到数据。

POST /haoke/user/_mget
{"ids" : [ "1001", "1006" ]
}

结果:

也就是说,一个数据的存在不会影响其它数据的返回

_bulk操作

在Elasticsearch中,支持批量的插入、修改、删除操作,都是通过_bulk的api完成的。

请求格式如下:(请求格式不同寻常)

{ action: { metadata }}
{ request body }
{ action: { metadata }}
{ request body }
...

批量插入数据:

{"create":{"_index":"haoke","_type":"user","_id":2001}}
{"id":2001,"name":"name1","age": 20,"sex": "男"}
{"create":{"_index":"haoke","_type":"user","_id":2002}}
{"id":2002,"name":"name2","age": 20,"sex": "男"}
{"create":{"_index":"haoke","_type":"user","_id":2003}}
{"id":2003,"name":"name3","age": 20,"sex": "男"}

注意最后一行的回车。

批量删除:

{"delete":{"_index":"haoke","_type":"user","_id":2001}}
{"delete":{"_index":"haoke","_type":"user","_id":2002}}
{"delete":{"_index":"haoke","_type":"user","_id":2003}}

由于delete没有请求体,所以,action的下一行直接就是下一个action。

其他操作就类似了。一次请求多少性能最高?

  • 整个批量请求需要被加载到接受我们请求节点的内存里,所以请求越大,给其它请求可用的内存就越小。有一 个最佳的bulk请求大小。超过这个大小,性能不再提升而且可能降低。

  • 最佳大小,当然并不是一个固定的数字。它完全取决于你的硬件、你文档的大小和复杂度以及索引和搜索的负 载。

  • 幸运的是,这个最佳点(sweetspot)还是容易找到的:试着批量索引标准的文档,随着大小的增长,当性能开始 降低,说明你每个批次的大小太大了。开始的数量可以在1000~5000个文档之间,如果你的文档非常大,可以使用较小的批次。

  • 通常着眼于你请求批次的物理大小是非常有用的。一千个1kB的文档和一千个1MB的文档大不相同。一个好的 批次最好保持在5-15MB大小间。

分页

和SQL使用LIMIT 关键字返回只有一页的结果一样,Elasticsearch接受from 和size 参数:

  • size: 结果数,默认10

  • from: 跳过开始的结果数,默认0

如果你想每页显示5个结果,页码从1到3,那请求如下:

GET /_search?size=5
GET /_search?size=5&from=5
GET /_search?size=5&from=10

应该当心分页太深或者一次请求太多的结果。结果在返回前会被排序。但是记住一个搜索请求常常涉及多个分 片。每个分片生成自己排好序的结果,它们接着需要集中起来排序以确保整体排序正确。

GET /haoke/user/_1 search?size=1&from=2

  • string类型在ElasticSearch 旧版本中使用较多,从ElasticSearch 5.x开始不再支持string,由text和 keyword类型替代。

  • text 类型,当一个字段是要被全文搜索的,比如Email内容、产品描述,应该使用text类型。设置text类型 以后,字段内容会被分析,在生成倒排索引以前,字符串会被分析器分成一个一个词项。text类型的字段 不用于排序,很少用于聚合。

  • keyword类型适用于索引结构化的字段,比如email地址、主机名、状态码和标签。如果字段需要进行过 滤(比如查找已发布博客中status属性为published的文章)、排序、聚合。keyword类型的字段只能通过精 确值搜索到。

创建明确类型的索引:

如果你要像之前旧版版本一样兼容自定义 type ,需要将 *i*nclude_type_name=true 携带

put http://202.193.56.222:9200/itcast?include_type_name=true
{"settings":{"index":{"number_of_shards":"2","number_of_replicas":"0"}},"mappings":{"person":{"properties":{"name":{"type":"text"},"age":{"type":"integer"},"mail":{"type":"keyword"},"hobby":{"type":"text"}}}}
}

查看映射

GET /itcast/_mapping

插入数据

POST /itcast/_bulk
{"index":{"_index":"itcast","_type":"person"}}
{"name":"张三","age": 20,"mail": "111@qq.com","hobby":"羽毛球、乒乓球、足球"}
{"index":{"_index":"itcast","_type":"person"}}
{"name":"李四","age": 21,"mail": "222@qq.com","hobby":"羽毛球、乒乓球、足球、篮球"}
{"index":{"_index":"itcast","_type":"person"}}
{"name":"王五","age": 22,"mail": "333@qq.com","hobby":"羽毛球、篮球、游泳、听音乐"}
{"index":{"_index":"itcast","_type":"person"}}
{"name":"赵六","age": 23,"mail": "444@qq.com","hobby":"跑步、游泳"}
{"index":{"_index":"itcast","_type":"person"}}
{"name":"孙七","age": 24,"mail": "555@qq.com","hobby":"听音乐、看电影"}

测试搜索

POST /itcast/person/_search
{"query":{"match":{"hobby":"音乐"}}
}

结构化查询

term查询

term 主要用于精确匹配哪些值,比如数字,日期,布尔值或 not_analyzed 的字符串(未经分析的文本数据类型):

{ "term": { "age": 26 }}
{ "term": { "date": "2014-09-01" }}
{ "term": { "public": true }}
{ "term": { "tag": "full_text" }}

示例

POST /itcast/person/_search
{"query":{"term":{"age":20}}
}

terms查询

terms 跟 term 有点类似,但 terms 允许指定多个匹配条件。 如果某个字段指定了多个值,那么文档需要一起去 做匹配:

{"terms":{"tag":["search","full_text","nosql"]}
}

示例:

POST /itcast/person/_search
{"query":{"terms":{"age":[20,21]}}
}

range查询

range 过滤允许我们按照指定范围查找一批数据:

{"range":{"age":{"gte":20,"lt":30}}
}

范围操作符包含:

  • gt : 大于

  • gte:: 大于等于

  • lt : 小于

  • lte: 小于等于

示例:

POST /itcast/person/_search
{"query":{"range":{"age":{"gte":20,"lte":22}}}
}

exists 查询

exists 查询可以用于查找文档中是否包含指定字段或没有某个字段,类似于SQL语句中的IS_NULL 条件

{"exists": {"field": "title"}
}

这两个查询只是针对已经查出一批数据来,但是想区分出某个字段是否存在的时候使用。示例:

POST /haoke/user/_search
{"query": {"exists": { #必须包含"field": "card"}}
}

match查询

match 查询是一个标准查询,不管你需要全文本查询还是精确查询基本上都要用到它。

如果你使用 match 查询一个全文本字段,它会在真正查询之前用分析器先分析match 一下查询字符:

{"match": {"tweet": "About Search"}
}

如果用match 下指定了一个确切值,在遇到数字,日期,布尔值或者not_analyzed 的字符串时,它将为你搜索你 给定的值:

{ "match": { "age": 26 }}
{ "match": { "date": "2014-09-01" }}
{ "match": { "public": true }}
{ "match": { "tag": "full_text" }}

bool查询

  • bool 查询可以用来合并多个条件查询结果的布尔逻辑,它包含一下操作符:

  • must :: 多个查询条件的完全匹配,相当于 and 。

  • must_not :: 多个查询条件的相反匹配,相当于 not 。

  • should :: 至少有一个查询条件匹配, 相当于 or 。

这些参数可以分别继承一个查询条件或者一个查询条件的数组:

{"bool":{"must":{"term":{"folder":"inbox"}},"must_not":{"term":{"tag":"spam"}},"should":[{"term":{"starred":true}},{"term":{"unread":true}}]}
}

过滤查询

前面讲过结构化查询,Elasticsearch也支持过滤查询,如term、range、match等。

示例:查询年龄为20岁的用户。

POST /itcast/person/_search
{"query":{"bool":{"filter":{"term":{"age":20}}}}
}

查询和过滤的对比

  • 一条过滤语句会询问每个文档的字段值是否包含着特定值。

  • 查询语句会询问每个文档的字段值与特定值的匹配程度如何。

  • 一条查询语句会计算每个文档与查询语句的相关性,会给出一个相关性评分 _score,并且 按照相关性对匹 配到的文档进行排序。 这种评分方式非常适用于一个没有完全配置结果的全文本搜索。

  • 一个简单的文档列表,快速匹配运算并存入内存是十分方便的, 每个文档仅需要1个字节。这些缓存的过滤结果集与后续请求的结合使用是非常高效的。

  • 查询语句不仅要查找相匹配的文档,还需要计算每个文档的相关性,所以一般来说查询语句要比 过滤语句更耗时,并且查询结果也不可缓存。

建议:

做精确匹配搜索时,最好用过滤语句,因为过滤语句可以缓存数据。

中文分词

什么是分词

分词就是指将一个文本转化成一系列单词的过程,也叫文本分析,在Elasticsearch中称之为Analysis。

举例:我是中国人 --> 我/是/中国人

分词api

指定分词器进行分词

POST /_analyze
{"analyzer":"standard","text":"hello world"
}

结果如下

在结果中不仅可以看出分词的结果,还返回了该词在文本中的位置。

指定索引分词

POST /itcast/_analyze
{"analyzer": "standard","field": "hobby","text": "听音乐"
}

中文分词难点

中文分词的难点在于,在汉语中没有明显的词汇分界点,如在英语中,空格可以作为分隔符,如果分隔不正确就会造成歧义。如:

  • 我/爱/炒肉丝

  • 我/爱/炒/肉丝

常用中文分词器,IK、jieba、THULAC等,推荐使用IK分词器。

IK Analyzer是一个开源的,基于java语言开发的轻量级的中文分词工具包。从2006年12月推出1.0版开始,IKAnalyzer已经推出了3个大版本。最初,它是以开源项目Luence为应用主体的,结合词典分词和文法分析算法的中文分词组件。新版本的IK Analyzer 3.0则发展为面向Java的公用分词组件,独立于Lucene项目,同时提供了对Lucene的默认优化实现。

采用了特有的“正向迭代最细粒度切分算法“,具有80万字/秒的高速处理能力 采用了多子处理器分析模式,支持:英文字母(IP地址、Email、URL)、数字(日期,常用中文数量词,罗马数字,科学计数法),中文词汇(姓名、地名处理)等分词处理。 优化的词典存储,更小的内存占用。

IK分词器 Elasticsearch插件地址:GitHub - medcl/elasticsearch-analysis-ik: The IK Analysis plugin integrates Lucene IK analyzer into elasticsearch, support customized dictionary.

安装分词器

首先下载到最新的ik分词器:下载地址

下载完成后,使用xftp工具,拷贝到服务器上

#安装方法:将下载到的 es/plugins/ik 目录下
mkdir es/plugins/ik#解压
unzip elasticsearch-analysis-ik-7.9.1.zip#重启
./bin/elasticsearch

我们通过日志,发现它已经成功加载了ik分词器插件

测试

POST /_analyze
{"analyzer": "ik_max_word","text": "我是中国人"
}

我们发现ik分词器已经成功分词完成

全文搜索

全文搜索两个最重要的方面是:

  • 相关性(Relevance) 它是评价查询与其结果间的相关程度,并根据这种相关程度对结果排名的一种能力,这 种计算方式可以是 TF/IDF 方法、地理位置邻近、模糊相似,或其他的某些算法。

  • 分词(Analysis) 它是将文本块转换为有区别的、规范化的 token 的一个过程,目的是为了创建倒排索引以及查询倒排索引。

构造数据

ES 7.4 默认不在支持指定索引类型,默认索引类型是_doc

http://202.193.56.222:9200/itcast?include_type_name=true
{"settings":{"index":{"number_of_shards":"1","number_of_replicas":"0"}},"mappings":{"person":{"properties":{"name":{"type":"text"},"age":{"type":"integer"},"mail":{"type":"keyword"},"hobby":{"type":"text","analyzer":"ik_max_word"}}}}
}

然后插入数据

POST http://202.193.56.222:9200/itcast/_bulk
{"index":{"_index":"itcast","_type":"person"}}
{"name":"张三","age": 20,"mail": "111@qq.com","hobby":"羽毛球、乒乓球、足球"}
{"index":{"_index":"itcast","_type":"person"}}
{"name":"李四","age": 21,"mail": "222@qq.com","hobby":"羽毛球、乒乓球、足球、篮球"}
{"index":{"_index":"itcast","_type":"person"}}
{"name":"王五","age": 22,"mail": "333@qq.com","hobby":"羽毛球、篮球、游泳、听音乐"}
{"index":{"_index":"itcast","_type":"person"}}
{"name":"赵六","age": 23,"mail": "444@qq.com","hobby":"跑步、游泳、篮球"}
{"index":{"_index":"itcast","_type":"person"}}
{"name":"孙七","age": 24,"mail": "555@qq.com","hobby":"听音乐、看电影、羽毛球"}

单词搜索

POST /itcast/person/_search
{"query":{"match":{"hobby":"音乐"}},"highlight":{"fields":{"hobby":{}}}
}

查询出来的结果如下,并且还带有高亮

过程说明:

  • 检查字段类型

    • 爱好 hobby 字段是一个 text 类型( 指定了IK分词器),这意味着查询字符串本身也应该被分词。

  • 分析查询字符串 。

    • 将查询的字符串 “音乐” 传入IK分词器中,输出的结果是单个项 音乐。因为只有一个单词项,所以 match 查询执行的是单个底层 term 查询。

  • 查找匹配文档 。

    • 用 term 查询在倒排索引中查找 “音乐” 然后获取一组包含该项的文档,本例的结果是文档:3 、5 。

  • 为每个文档评分 。

    • 用 term 查询计算每个文档相关度评分 _score ,这是种将 词频(term frequency,即词 “音乐” 在相关文档的hobby 字段中出现的频率)和 反向文档频率(inverse document frequency,即词 “音乐” 在所有文档的hobby 字段中出现的频率),以及字段的长度(即字段越短相关度越高)相结合的计算方式。

多词搜索

POST /itcast/person/_search
{"query":{"match":{"hobby":"音乐 篮球"}},"highlight":{"fields":{"hobby":{}}}
}

可以看到,包含了“音乐”、“篮球”的数据都已经被搜索到了。可是,搜索的结果并不符合我们的预期,因为我们想搜索的是既包含“音乐”又包含“篮球”的用户,显然结果返回的“或”的关系。在Elasticsearch中,可以指定词之间的逻辑关系,如下:

POST /itcast/person/_search
{"query":{"match":{"hobby":"音乐 篮球""operator":"and"}},"highlight":{"fields":{"hobby":{
​}}}
}

通过这样的话,就会让两个关键字之间存在and关系了

可以看到结果符合预期。

前面我们测试了“OR” 和 “AND”搜索,这是两个极端,其实在实际场景中,并不会选取这2个极端,更有可能是选取这种,或者说,只需要符合一定的相似度就可以查询到数据,在Elasticsearch中也支持这样的查询,通过 minimum_should_match来指定匹配度,如:70%;

示例:

{"query":{"match":{"hobby":{"query":"游泳 羽毛球","minimum_should_match":"80%"}}},"highlight": {"fields": {"hobby": {}}}
}
#结果:省略显示
"hits": {
"total": 4, #相似度为80%的情况下,查询到4条数据
"max_score": 1.621458,
"hits": [
​
}
#设置40%进行测试:
{"query":{"match":{"hobby":{"query":"游泳 羽毛球","minimum_should_match":"40%"}}},"highlight": {"fields": {"hobby": {}}}
}
​
#结果:
"hits": {
"total": 5, #相似度为40%的情况下,查询到5条数据
"max_score": 1.621458,
"hits": [
​
}

相似度应该多少合适,需要在实际的需求中进行反复测试,才可得到合理的值。

组合搜索

在搜索时,也可以使用过滤器中讲过的bool组合查询,示例:

POST /itcast/person/_search
{"query":{"bool":{"must":{"match":{"hobby":"篮球"}},"must_not":{"match":{"hobby":"音乐"}},"should":[{"match":{"hobby":"游泳"}}]}},"highlight":{"fields":{"hobby":{
​}}}
}

上面搜索的意思是: 搜索结果中必须包含篮球,不能包含音乐,如果包含了游泳,那么它的相似度更高。

结果:

评分的计算规则

bool 查询会为每个文档计算相关度评分 _score , 再将所有匹配的 must 和 should 语句的分数 _score 求和,最后除以 must 和 should 语句的总数。

must_not 语句不会影响评分; 它的作用只是将不相关的文档排除。

默认情况下,should中的内容不是必须匹配的,如果查询语句中没有must,那么就会至少匹配其中一个。当然了,也可以通过minimum_should_match参数进行控制,该值可以是数字也可以的百分比。

示例:

POST /itcast/person/_search
{"query":{"bool":{"should":[{"match":{"hobby":"游泳"}},{"match":{"hobby":"篮球"}},{"match":{"hobby":"音乐"}}],"minimum_should_match":2}},"highlight":{"fields":{"hobby":{
​}}}
}

minimum_should_match为2,意思是should中的三个词,至少要满足2个。

权重

有些时候,我们可能需要对某些词增加权重来影响该条数据的得分。如下:

搜索关键字为“游泳篮球”,如果结果中包含了“音乐”权重为10,包含了“跑步”权重为2。

POST /itcast/person/_search
{"query":{"bool":{"must":{"match":{"hobby":{"query":"游泳篮球","operator":"and"}}},"should":[{"match":{"hobby":{"query":"音乐","boost":10}}},{"match":{"hobby":{"query":"跑步","boost":2}}}]}},"highlight":{"fields":{"hobby":{
​}}}
}

ElasticSearch集群

集群节点

ELasticsearch的集群是由多个节点组成的,通过cluster.name设置集群名称,并且用于区分其它的集群,每个节点通过node.name指定节点的名称。

在Elasticsearch中,节点的类型主要有4种:

  • master节点

    • 配置文件中node.master属性为true(默认为true),就有资格被选为master节点。master节点用于控制整个集群的操作。比如创建或删除索引,管理其它非master节点等。

  • data节点

    • 配置文件中node.data属性为true(默认为true),就有资格被设置成data节点。data节点主要用于执行数据相关的操作。比如文档的CRUD。

  • 客户端节点

    • 配置文件中node.master属性和node.data属性均为false。

    • 该节点不能作为master节点,也不能作为data节点。

    • 可以作为客户端节点,用于响应用户的请求,把请求转发到其他节点

  • 部落节点

    • 当一个节点配置tribe.*的时候,它是一个特殊的客户端,它可以连接多个集群,在所有连接的集群上执行 搜索和其他操作。

搭建集群

#启动3个虚拟机,分别在3台虚拟机上部署安装Elasticsearch
mkdir /itcast/es-cluster
​
#分发到其它机器
scp -r es-cluster elsearch@192.168.40.134:/itcast
​
#node01的配置:
cluster.name: es-itcast-cluster
node.name: node01
node.master: true
node.data: true
network.host: 0.0.0.0
http.port: 9200
discovery.zen.ping.unicast.hosts: ["192.168.40.133","192.168.40.134","192.168.40.135"]
# 最小节点数
discovery.zen.minimum_master_nodes: 2
# 跨域专用
http.cors.enabled: true
http.cors.allow-origin: "*"
​
#node02的配置:
cluster.name: es-itcast-cluster
node.name: node02
node.master: true
node.data: true
network.host: 0.0.0.0
http.port: 9200
discovery.zen.ping.unicast.hosts: ["192.168.40.133","192.168.40.134","192.168.40.135"]
discovery.zen.minimum_master_nodes: 2
http.cors.enabled: true
http.cors.allow-origin: "*"
​
#node03的配置:
cluster.name: es-itcast-cluster
node.name: node02
node.master: true
node.data: true
network.host: 0.0.0.0
http.port: 9200
discovery.zen.ping.unicast.hosts: ["192.168.40.133","192.168.40.134","192.168.40.135"]
discovery.zen.minimum_master_nodes: 2
http.cors.enabled: true
http.cors.allow-origin: "*"
​
#分别启动3个节点
./elasticsearch

查看集群

分发阶段由以下步骤构成:

  1. 协调节点辨别出哪个document需要取回,并且向相关分片发出GET 请求。

  2. 每个分片加载document并且根据需要丰富(enrich)它们,然后再将document返回协调节点。

  3. 一旦所有的document都被取回,协调节点会将结果返回给客户端。

Java客户端

在Elasticsearch中,为java提供了2种客户端,一种是REST风格的客户端,另一种是Java API的客户端

REST客户端

Elasticsearch提供了2种REST客户端,一种是低级客户端,一种是高级客户端。

  • Java Low Level REST Client:官方提供的低级客户端。该客户端通过http来连接Elasticsearch集群。用户在使 用该客户端时需要将请求数据手动拼接成Elasticsearch所需JSON格式进行发送,收到响应时同样也需要将返回的JSON数据手动封装成对象。虽然麻烦,不过该客户端兼容所有的Elasticsearch版本。

  • Java High Level REST Client:官方提供的高级客户端。该客户端基于低级客户端实现,它提供了很多便捷的 API来解决低级客户端需要手动转换数据格式的问题。

构造数据

POST /haoke/house/_bulk
​
{"index":{"_index":"haoke","_type":"house"}}
{"id":"1001","title":"整租 · 南丹大楼 1居室 7500","price":"7500"}
{"index":{"_index":"haoke","_type":"house"}}
{"id":"1002","title":"陆家嘴板块,精装设计一室一厅,可拎包入住诚意租。","price":"8500"}
{"index":{"_index":"haoke","_type":"house"}}
{"id":"1003","title":"整租 · 健安坊 1居室 4050","price":"7500"}
{"index":{"_index":"haoke","_type":"house"}}
{"id":"1004","title":"整租 · 中凯城市之光+视野开阔+景色秀丽+拎包入住","price":"6500"}
{"index":{"_index":"haoke","_type":"house"}}
{"id":"1005","title":"整租 · 南京西路品质小区 21213三轨交汇 配套齐* 拎包入住","price":"6000"}
{"index":{"_index":"haoke","_type":"house"}}
{"id":"1006","title":"祥康里 简约风格 *南户型 拎包入住 看房随时","price":"7000"}

REST低级客户端

创建项目,加入依赖

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd"><modelVersion>4.0.0</modelVersion>
​<groupId>org.example</groupId><artifactId>Study_ElasticSearch_Code</artifactId><version>1.0-SNAPSHOT</version><build><plugins><plugin><groupId>org.apache.maven.plugins</groupId><artifactId>maven-compiler-plugin</artifactId><configuration><source>7</source><target>7</target></configuration></plugin></plugins></build>
​<dependencies><dependency><groupId>org.elasticsearch.client</groupId><artifactId>elasticsearch-rest-client</artifactId><version>6.8.5</version></dependency><dependency><groupId>junit</groupId><artifactId>junit</artifactId><version>4.12</version><scope>test</scope></dependency><dependency><groupId>com.fasterxml.jackson.core</groupId><artifactId>jackson-databind</artifactId><version>2.11.1</version></dependency></dependencies>
</project>

编写测试类

import com.fasterxml.jackson.core.JsonProcessingException;
import com.fasterxml.jackson.databind.ObjectMapper;
import org.apache.http.HttpHost;
import org.apache.http.util.EntityUtils;
import org.elasticsearch.client.Request;
import org.elasticsearch.client.Response;
import org.elasticsearch.client.RestClient;
import org.elasticsearch.client.RestClientBuilder;
​
import java.io.IOException;
import java.util.HashMap;
import java.util.Map;
​
/*** 使用低级客户端 访问** @author: 陌溪* @create: 2020-09-23-16:33*/
public class ESApi {private RestClient restClient;private static final ObjectMapper MAPPER = new ObjectMapper();
​/*** 初始化*/public void init() {RestClientBuilder restClientBuilder = RestClient.builder(new HttpHost("202.193.56.222", 9200, "http"));this.restClient = restClientBuilder.build();}
​/*** 查询集群状态*/public void testGetInfo() throws IOException {Request request = new Request("GET", "/_cluster/state");request.addParameter("pretty", "true");Response response = this.restClient.performRequest(request);System.out.println(response.getStatusLine());System.out.println(EntityUtils.toString(response.getEntity()));}
​/*** 根据ID查询数据* @throws IOException*/public void testGetHouseInfo() throws IOException {Request request = new Request("GET", "/haoke/house/Z3CduXQBYpWein3CRFug");request.addParameter("pretty", "true");Response response = this.restClient.performRequest(request);System.out.println(response.getStatusLine());System.out.println(EntityUtils.toString(response.getEntity()));}
​public void testCreateData() throws IOException {Request request = new Request("POST", "/haoke/house");Map<String, Object> data = new HashMap<>();data.put("id", "2001");data.put("title", "张江高科");data.put("price", "3500");// 写成JSONrequest.setJsonEntity(MAPPER.writeValueAsString(data));Response response = this.restClient.performRequest(request);System.out.println(response.getStatusLine());System.out.println(EntityUtils.toString(response.getEntity()));
​}
​// 搜索数据public void testSearchData() throws IOException {Request request = new Request("POST", "/haoke/house/_search");String searchJson = "{\"query\": {\"match\": {\"title\": \"拎包入住\"}}}";request.setJsonEntity(searchJson);request.addParameter("pretty","true");Response response = this.restClient.performRequest(request);System.out.println(response.getStatusLine());System.out.println(EntityUtils.toString(response.getEntity()));}
​public static void main(String[] args) throws IOException {ESApi esApi = new ESApi();esApi.init();
//        esApi.testGetInfo();
//        esApi.testGetHouseInfo();esApi.testCreateData();}
}

REST高级客户端

创建项目,引入依赖

<dependency><groupId>org.elasticsearch.client</groupId><artifactId>elasticsearch-rest-high-level-client</artifactId><version>6.8.5</version>
</dependency>

编写测试用例

import com.fasterxml.jackson.databind.ObjectMapper;
import org.apache.http.HttpHost;
import org.apache.http.util.EntityUtils;
import org.elasticsearch.action.ActionListener;
import org.elasticsearch.action.delete.DeleteRequest;
import org.elasticsearch.action.delete.DeleteResponse;
import org.elasticsearch.action.get.GetRequest;
import org.elasticsearch.action.get.GetResponse;
import org.elasticsearch.action.index.IndexRequest;
import org.elasticsearch.action.index.IndexResponse;
import org.elasticsearch.action.search.SearchRequest;
import org.elasticsearch.action.search.SearchResponse;
import org.elasticsearch.action.update.UpdateRequest;
import org.elasticsearch.action.update.UpdateResponse;
import org.elasticsearch.client.*;
import org.elasticsearch.common.Strings;
import org.elasticsearch.common.unit.TimeValue;
import org.elasticsearch.index.query.QueryBuilders;
import org.elasticsearch.search.SearchHit;
import org.elasticsearch.search.SearchHits;
import org.elasticsearch.search.builder.SearchSourceBuilder;
import org.elasticsearch.search.fetch.subphase.FetchSourceContext;
​
import java.io.IOException;
import java.util.HashMap;
import java.util.Map;
import java.util.concurrent.TimeUnit;
​
/*** ES高级客户端** @author: 陌溪* @create: 2020-09-23-16:56*/
public class ESHightApi {private RestHighLevelClient client;
​public void init() {RestClientBuilder restClientBuilder = RestClient.builder(new HttpHost("202.193.56.222", 9200, "http"));this.client = new RestHighLevelClient(restClientBuilder);}
​public void after() throws Exception {this.client.close();}
​/*** 新增文档,同步操作** @throws Exception*/public void testCreate() throws Exception {Map<String, Object> data = new HashMap<>();data.put("id", "2002");data.put("title", "南京西路 拎包入住 一室一厅");data.put("price", "4500");IndexRequest indexRequest = new IndexRequest("haoke", "house").source(data);IndexResponse indexResponse = this.client.index(indexRequest,RequestOptions.DEFAULT);System.out.println("id->" + indexResponse.getId());System.out.println("index->" + indexResponse.getIndex());System.out.println("type->" + indexResponse.getType());System.out.println("version->" + indexResponse.getVersion());System.out.println("result->" + indexResponse.getResult());System.out.println("shardInfo->" + indexResponse.getShardInfo());}
​/*** 异步创建文档* @throws Exception*/public void testCreateAsync() throws Exception {Map<String, Object> data = new HashMap<>();data.put("id", "2003");data.put("title", "南京东路 最新房源 二室一厅");data.put("price", "5500");IndexRequest indexRequest = new IndexRequest("haoke", "house").source(data);this.client.indexAsync(indexRequest, RequestOptions.DEFAULT, newActionListener<IndexResponse>() {@Overridepublic void onResponse(IndexResponse indexResponse) {System.out.println("id->" + indexResponse.getId());System.out.println("index->" + indexResponse.getIndex());System.out.println("type->" + indexResponse.getType());System.out.println("version->" + indexResponse.getVersion());System.out.println("result->" + indexResponse.getResult());System.out.println("shardInfo->" + indexResponse.getShardInfo());}@Overridepublic void onFailure(Exception e) {System.out.println(e);}});System.out.println("ok");Thread.sleep(20000);}
​/*** 查询* @throws Exception*/public void testQuery() throws Exception {GetRequest getRequest = new GetRequest("haoke", "house","GkpdE2gBCKv8opxuOj12");// 指定返回的字段String[] includes = new String[]{"title", "id"};String[] excludes = Strings.EMPTY_ARRAY;FetchSourceContext fetchSourceContext =new FetchSourceContext(true, includes, excludes);getRequest.fetchSourceContext(fetchSourceContext);GetResponse response = this.client.get(getRequest, RequestOptions.DEFAULT);System.out.println("数据 -> " + response.getSource());}
​/*** 判断是否存在** @throws Exception*/public void testExists() throws Exception {GetRequest getRequest = new GetRequest("haoke", "house","GkpdE2gBCKv8opxuOj12");
// 不返回的字段getRequest.fetchSourceContext(new FetchSourceContext(false));boolean exists = this.client.exists(getRequest, RequestOptions.DEFAULT);System.out.println("exists -> " + exists);}/*** 删除数据** @throws Exception*/public void testDelete() throws Exception {DeleteRequest deleteRequest = new DeleteRequest("haoke", "house","GkpdE2gBCKv8opxuOj12");DeleteResponse response = this.client.delete(deleteRequest,RequestOptions.DEFAULT);System.out.println(response.status());// OK or NOT_FOUND}/*** 更新数据** @throws Exception*/public void testUpdate() throws Exception {UpdateRequest updateRequest = new UpdateRequest("haoke", "house","G0pfE2gBCKv8opxuRz1y");Map<String, Object> data = new HashMap<>();data.put("title", "张江高科2");data.put("price", "5000");updateRequest.doc(data);UpdateResponse response = this.client.update(updateRequest,RequestOptions.DEFAULT);System.out.println("version -> " + response.getVersion());}/*** 测试搜索** @throws Exception*/public void testSearch() throws Exception {SearchRequest searchRequest = new SearchRequest("haoke");searchRequest.types("house");SearchSourceBuilder sourceBuilder = new SearchSourceBuilder();sourceBuilder.query(QueryBuilders.matchQuery("title", "拎包入住"));sourceBuilder.from(0);sourceBuilder.size(5);sourceBuilder.timeout(new TimeValue(60, TimeUnit.SECONDS));searchRequest.source(sourceBuilder);SearchResponse search = this.client.search(searchRequest,RequestOptions.DEFAULT);System.out.println("搜索到 " + search.getHits().totalHits + " 条数据.");SearchHits hits = search.getHits();for (SearchHit hit : hits) {System.out.println(hit.getSourceAsString());}}
​public static void main(String[] args) throws Exception {ESHightApi esHightApi = new ESHightApi();esHightApi.init();esHightApi.testCreate();}
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/89938.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

9月大理,Move HackerHouse,成为全球数字游民的第一站

&#x1f680;世界各地的 hacker 们&#xff01;即日起&#xff0c;我们正式向您发出 co-buiding & co-living 的邀请&#xff01; 9.3日至9.24日&#xff0c;为期3周的 Move 主题Antalpha HackerHouse 将坐落于大理&#xff0c;邀请所有 Web3 开发者一起探索 Move 生态发…

基于Selenium模块实现无界面模式 执行JS脚本

此篇文章主要介绍如何使用 Selenium 模块实现 无界面模式 & 执行JS脚本(把滚动条拉到底部)&#xff0c;并以具体的示例进行展示。 1、Selenium 设置无界面模式 创建浏览器对象之前&#xff0c;创建 options 功能对象 &#xff1a;options webdriver.ChromeOptions() 添加…

微服务系列(2)--注册中心

在博文&#xff1a;微服务系列(1)里我们提到过注册中心的概念&#xff0c;简单来说微服务注册中心是一个用于存储和管理微服务实例信息的组件&#xff0c;它提供了服务注册、服务发现、服务健康检查等功能&#xff0c;以确保微服务之间的稳定通信。在微服务架构中&#xff0c;各…

Python 图形界面框架TkInter(第八篇:理解pack布局)

前言 tkinter图形用户界面框架提供了3种布局方式&#xff0c;分别是 1、pack 2、grid 3、place 介绍下pack布局方式&#xff0c;这是我们最常用的布局方式&#xff0c;理解了pack布局&#xff0c;绝大多数需求都能满足。 第一次使用pack&#xff08;&#xff09; import …

6. CSS(三)

目录 一、盒子模型 &#xff08;一&#xff09;网页布局的本质 &#xff08;二&#xff09;盒子模型组成 &#xff08;三&#xff09;边框&#xff08;border&#xff09; &#xff08;四&#xff09;表格的细线边框 &#xff08;五&#xff09;内边距&#xff08;padding…

Android多屏幕支持-Android12

Android多屏幕支持-Android12 1、概览及相关文章2、屏幕窗口配置2.1 配置xml文件2.2 DisplayInfo#uniqueId 屏幕标识2.3 adb查看信息 3、配置文件解析3.1 xml字段读取3.2 简要时序图 4、每屏幕焦点 android12-release 1、概览及相关文章 AOSP > 文档 > 心主题 > 多屏…

【数据结构】栈与队列

1 栈 1.1 栈的概念及结构 栈&#xff1a;一种特殊的线性表&#xff0c;其只允许在固定的一端进行插入和删除元素操作。进行数据插入和删除操作的一端称为栈顶&#xff0c;另一端称为栈底。栈中的数据元素遵守后进先出 LIFO (Last In First Out) 的原则。 压栈&#xff1a;栈…

【Git】

Git 简介下载安装验证安装 简介 Git 是一个分布式版本控制系统&#xff0c;用于跟踪和管理软件开发项目的变化。它可以有效地记录文件的修改历史、协调多人协作开发、解决代码冲突&#xff0c;并提供了分支管理、版本回滚等功能&#xff0c;使团队能够更好地合作开发软件项目。…

Android实现超出固定行数折叠文字“查看全文“、“收起全文“

先上效果图 分析问题 网上有很多关于这个的代码&#xff0c;实现都过于复杂了&#xff0c;github上甚至还看到一篇文章600多行代码&#xff0c;结果一跑起来全是bug。还是自己写吧&#xff01;&#xff01;&#xff01; 如果我们需要换行的"查看全文"、"收起全…

8.14 作业 ARM

.text .globl _gcd_gcd:mov r0,#9mov r1,#15cmp r0,r1 比较r0和r1寄存器中的值beq stopsubhi r0,r0,r1subcc r1,r1,r0stop:b stop .end用for循环实现1~100之间和&#xff1a; .text .globl _start_start:mov r0,#0 总和mov r1,#1 从1开始mov r2,#100 到100结束bl add_loopa…

安装elasticsearch

一、docker安装elasticsearch 1、下载镜像 docker pull elasticsearch:6.5.4 2、启动容器 docker run -p 9200:9200 -p 9300:9300 --name elasticsearch \ -e "discovery.typesingle-node" \ -e "cluster.nameelasticsearch" \ -e "ES_JAVA_OPTS-Xm…

软件测试基础篇——Docker

1、docker技术概述 docker描述&#xff1a;docker是一项虚拟化的容器技术&#xff08;类似于虚拟机&#xff09;&#xff0c;docker技术给使用者提供一个平台&#xff0c;在该平台上可以利用提供的容器&#xff0c;对每一个应用程序进行单独的封装隔离&#xff0c;每一个应用程…

IC人必看| 模拟IC方向面试常考问题及答案汇总(二)

有不少小伙伴说还想要更多模拟IC方向的面试题目&#xff0c;这不就来了&#xff01;&#xff08;文末可领全部面试题目&#xff09; 1. Bandgap 里有几种反馈&#xff1f;原理是&#xff1f; 正反馈和负反馈。 2. 负反馈种类&#xff1f;负反馈的优点&#xff1f; 种类&am…

【深度学习】【风格迁移】Zero-shot Image-to-Image Translation

论文&#xff1a;https://arxiv.org/abs/2302.03027 代码&#xff1a;https://github.com/pix2pixzero/pix2pix-zero/tree/main 文章目录 Abstract1. Introduction相关工作3. Method Abstract 大规模文本到图像生成模型展示了它们合成多样且高质量图像的显著能力。然而&#x…

代码质量检查工具SonarQube

Devops流水线之SonarQube 文章目录 Devops流水线之SonarQube1. 软件功能介绍及用途2. 软件环境搭建与使用2.1 使用方法2.2 SonarQube相关属性说明2.3 Sonar配置文件内容说明 3. 使用环节4. 检查方法 1. 软件功能介绍及用途 SonarQube是一个用于代码质量管理的开源平台&#xf…

网络安全进阶学习第十五课——Oracle SQL注入

文章目录 一、Oracle数据库介绍二、Oracle和MySQL的语法差异&#xff1a;三、Oracle的数据库结构四、Oracle的重点系统表五、Oracle权限分类1、系统权限2、实体权限3、管理角色 六、oracle常用信息查询方法七、联合查询注入1、order by 猜字段数量2、查数据库版本和用户名3、查…

项目知识点记录

1.使用druid连接池 使用properties配置文件&#xff1a; driverClassName com.mysql.cj.jdbc.Driver url jdbc:mysql://localhost:3306/book?useSSLtrue&setUnicodetrue&charsetEncodingUTF-8&serverTimezoneGMT%2B8 username root password 123456 #初始化链接数…

Syncfusion Essential Edit for WPF Crack

Syncfusion Essential Edit for WPF Crack 在任何WPF应用程序中启用语法高亮显示。 Syncfusion Essential Edit for WPF是一款具有所有基本功能的编辑器&#xff0c;如文本编辑、剪切、复制和粘贴。它允许用户从各种文件格式打开文件并将其保存为各种文件格式。Syncfusion Esse…

Streamlit项目: 轻松搭建部署个人博客网站

文章目录 1 前言1.1 探索 Streamlit&#xff1a;轻松创建交互式应用1.2 最全 Streamlit 教程专栏 2 我的个人博客网站已上线&#xff01;2.1 一个集成了智能中医舌诊-中e诊专栏的博客网站2.2 前期准备2.3 使用 Streamlit Cloud 运行 3 知识点讲解3.1 实现多页面&#xff1a;两种…

黑马项目一阶段面试 项目介绍篇

我完成了一个外卖项目&#xff0c;名叫苍穹外卖&#xff0c;是跟着黑马程序员的课程来自己动手写的。 项目基本实现了外卖客户端、商家端的后端完整业务。 商家端分为员工管理、文件上传、菜品管理、分类管理、套餐管理、店铺营业状态、订单下单派送等的管理、数据统计等&…