百日筑基篇——python爬虫学习(一)

百日筑基篇——python爬虫学习(一)

文章目录

  • 前言
  • 一、python爬虫介绍
  • 二、URL管理器
  • 三、所需基础模块的介绍
    • 1. requests
    • 2. BeautifulSoup
      • 1. HTML介绍
      • 2. 网页解析器
  • 四、实操
    • 1. 代码展示
    • 2. 代码解释
      • 1. 将大文件划分为小的文件(根据AA的ID数量划分)
      • 2. 获得结果页面的url
      • 3. 获取结果页面,提取出所需信息
      • 4. 文件合并操作
  • 总结


前言

随着学习的深入,有关从各种不同的数据库中以及互联网上的海量信息,如何有选择性的爬取我们所需的数据以方便我们的数据分析工作,爬虫的学习是必要的。


一、python爬虫介绍

Python爬虫是指使用Python编程语言编写的程序,通过模拟浏览器行为从网页中提取数据的过程

主要用途包括:

  1. 数据采集:通过爬虫可以从互联网上收集大量的数据,如新闻、论坛帖子、商品信息等。

  2. 数据分析:爬虫可以获取特定网站或多个网站的数据,进行统计和分析。

  3. 自动化测试:爬虫可以模拟用户行为,自动化地访问网站,并检查网站的功能、性能等。

  4. 内容聚合:通过爬虫可以自动化地从多个网站上获取信息,并将其聚合成为一个平台,方便用户浏览。

二、URL管理器

是指对爬取URL进行管理,防止重复和循环爬取,方便新增URL和取出URL。

class UrlManager():"""url管理器"""def __init__(self):self.new_urls = set()self.old_urls = set()def add_newurl(self,url):if url is None or len(url) == 0:returnif url in self.new_urls or url in self.old_urls:returnself.new_urls.add(url)def add_newurls(self,urls):if urls is None or len(urls) == 0:returnfor url in urls:self.add_newurl(url)def get_url(self):if self.has_newurl():url = self.new_urls.pop()self.old_urls.add(url)return urlelse:return Nonedef has_newurl(self):return len(self.new_urls) > 0

该类中创建了两个集合:new_urls和 old_urls ,分别表示新增url和已爬取完的url的存储集合。
定义了四个方法,

  1. add_newurl(self, url): 添加新的URL到new_urls集合中。如果URL为空或已经存在于new_urls或old_urls中,则不添加。
  2. add_newurls(self, urls): 批量添加URL到new_urls集合中。如果URL为空,则不添加。
  3. get_url(self): 从new_urls中获取一个未爬取的URL,将其移动到old_urls集合中,并返回该URL。如果new_urls为空,则返回None。
  4. has_newurl(self): 判断是否还有未爬取的URL。返回new_urls集合的长度是否大于0。

三、所需基础模块的介绍

1. requests

用于发送HTTP请求,并获取网页内容。

import requests
requests.post(url=,params=,data=,headers=,timeout=,verify=,allow_redirects=,cookies=)
#里面的参数依次代表请求的URL、查询参数、请求数据、请求头、超时时间、SSL证书验证、重定向处理和Cookies。url = "https://wolfpsort.hgc.jp/results/pLAcbca22a5a0ccf7d913a9fc0fb140c3f4.html"r = requests.post(url)
#查看状态码,200为请求成功
print(r.status_code)#查看当前编码,以及改变编码
print(r.encoding)
r.encoding = "utf-8"
print(r.encoding)#查看返回的网页内容
print(r.text)#查看返回的http的请求头
print(r.headers)#查看实际返回的URL
print(r.url)#以字节的方式返回内容
print(r.content)#查看服务端写入本地的cookies数据
print(r.cookies)

2. BeautifulSoup

用于解析HTML或XML等文档,提取所需的数据。

1. HTML介绍

HTML指的是超文本标记语言,一种用于创建网页结构的标记语言。它由一系列的元素(标签)组成,通过标签来描述网页中的内容和结构。

HTML标签:
是由< >包围的关键词,标签通常成对出现,且标签对中的第一个标签是开始标签,第二个则是结束标签,如下图所示:
请添加图片描述

在HTML语言中,标签中一般伴随着属性,比如:”id、class、herf等"

在这里插入图片描述

2. 网页解析器

导入 BeautifulSoup 模块
解析的一般步骤是:

  1. 得到HTML网页的文本
  2. 创建BeautifulSoup对象
  3. 搜索节点 (使用find_all或 find,前者返回满足条件的所有节点,后者返回第一个)
  4. 访问节点 (名称、属性、文字等)

示例代码如下:

base_url = "https://wolfpsort.hgc.jp/"from bs4 import BeautifulSoupwith open("D:\python\PycharmProjects\pythonProject1\pachou\linshi.html", "r", encoding="utf-8") as f:html_doc = f.read()soup = BeautifulSoup(html_doc,  # HTML文档字符串"html.parser",  # 解析器
)#可以分区
div_node = soup.find("div",id ="content")
links= div_node.find_all("a")# links = soup.find_all("a")
for link in links:print(link.name,base_url+link["href"],link.get_text())imgs = soup.find_all("img")
for img in imgs:print(base_url+img["src"])

请添加图片描述
这是一个基于wolfpsort网页的页面内容的爬取,根据该网页的HTML文本,可以通过标签以及属性的设置,来获得我们所需的指定的节点,再获取节点中的内容,如"herf"等

四、实操

1. 代码展示

import time
from selenium import webdriver
from selenium.webdriver.common.by import By
import requests
import os
import pandas as pddef split_gene_file(source_file, output_folder, ids_per_file):os.makedirs(output_folder, exist_ok=True)current_file = Nonecount = 0with open(source_file, "r") as f:for line in f:if line.startswith(">"):count += 1if count % ids_per_file == 1:if current_file:current_file.close()output_file = f"{output_folder}/gene_file_{count // ids_per_file + 1}.csv"current_file = open(output_file, "w", encoding='utf-8')current_file.write(line)else:current_file.write(line)if current_file:current_file.close()split_gene_file("D:\yuceji\Lindera_aggregata.gene.pep", "gene1", 500)files = os.listdir("D:\python\PycharmProjects\pythonProject1\pachou\gene1")result_urls = []for i in range(0, 4):    #可自行设置所需文件数# 设置WebDriver路径,启动浏览器driver = webdriver.Edge()# 打开网页url = "https://wolfpsort.hgc.jp/"driver.get(url)time.sleep(5)wuzhong_type = driver.find_element(By.XPATH, '//*[@id="content"]/form/table/tbody/tr[1]/td[1]/p[1]/input[2]')wuzhong_type.click()wenjian_type = driver.find_element(By.XPATH, '//*[@id="content"]/form/table/tbody/tr[1]/td[1]/p[2]/input[2]')wenjian_type.click()input_element = driver.find_element(By.XPATH, '//*[@id="content"]/form/table/tbody/tr[1]/td[1]/p[3]/input')input_element.send_keys(f"D:\python\PycharmProjects\pythonProject1\pachou\gene1\gene_file_{i + 1}.csv")time.sleep(10)# 提交表单submit_button = driver.find_element(By.XPATH, '//*[@id="content"]/form/table/tbody/tr[2]/td/p/input[1]')submit_button.click()time.sleep(30)with open("result_urls","a",encoding="utf-8") as f:# 获取结果页面的URLresult_url = driver.current_urlf.write(result_url+ "\n")# 输出结果页面的URLprint(result_url)result_urls.append(result_url)# 关闭浏览器driver.quit()for i in range(len(result_urls)):r = requests.get(result_urls[i])print(r.status_code)text = r.textlines = text.split("<BR>")AA_ID_list = []yaxibao_list = []for line in lines:if "details" in line:AA_ID = line.split("<A")[0].strip().split()[-1]yaxibao = line.split("details")[1].strip().split()[1][:-1]AA_ID_list.append(AA_ID)yaxibao_list.append(yaxibao)with open(fr"D:\python\PycharmProjects\pythonProject1\pachou\result_dir\yaxibao{i}.csv", "w", encoding="utf-8") as f:f.write("AA_ID, yaxibao\n")  # 写入列名for j in range(len(AA_ID_list)):f.write(f"{AA_ID_list[j]}, {yaxibao_list[j]}\n")print(result_urls)# 再将所有的结果文件合并为一个大文件
result_csv = r"D:\python\PycharmProjects\pythonProject1\pachou\result_dir"
# 获取结果文件列表
result_files = os.listdir(result_csv)[:-1]
print(result_files)
# 创建一个空的DataFrame用于存储合并后的结果
merged_data = pd.DataFrame()
# 遍历每个结果文件
for file in result_files:# 读取结果文件df = pd.read_csv(result_csv + "\\" + file)#print(df)# 将结果文件的数据添加到合并后的DataFrame中merged_data = pd.concat([merged_data, df])
#print(merged_data)
# 保存合并后的结果到一个大文件
merged_data.to_csv("merged_results.csv", index=False)

我运行了这个代码,遍历前面四个文件,发现都很好的得到了结果页面的URL。说明这个代码是可行的。

请添加图片描述

2. 代码解释

这个代码差不多可以分为四个部分:

  1. 将大文件划分为小的文件
  2. 使用selenium库进行模拟用户行为,以获得结果页面的url
  3. 使用requests模块,通过上一步获得的url,发送请求,获取结果页面,并提取出所需信息
  4. 文件合并操作,使用pandas库中的concat方法,将前面得到的众多小文件的结果整合到一个大文件中。

1. 将大文件划分为小的文件(根据AA的ID数量划分)

请添加图片描述

  1. 定义一个split_gene_file()函数,其中"ids_per_file"参数表示指定每个文件中的ID数
  2. 创建一个存储文件的文件夹
  3. 使用with语句打开源文件,并且遍历文件中的每一行,之后使用if语句判断当前行是否是有ID的行,如果不是,就直接将当前行写入当前文件(current_file);如果是,就将count(表示已读取到的ID数)的数加上1,然后再判断已读取的ID数量是否达到了自己指定的每个文件的ID数量,如果达到了,就表示需要创建一个新的输出文件output_file, 并将文件对象赋值给current_file变量,使用"w"模式表示以写入模式打开文件,并将当前行写入当前文件。
  4. 在处理完源文件后,检查是否存在当前正在写入的文件对象。如果是,则关闭该文件。

2. 获得结果页面的url

在这里插入图片描述

这是基于python的selenium库,
Selenium是一个用于Web自动化的工具,可以用于模拟用户在网页浏览器上的行为,包括点击、输入、提交表单等操作。

其中最主要的步骤还是查看官网页面的源代码,通过HTML文本的标签获取元素的定位。
例如:
我要查看”Please select an organism type:" ,可以右键单击,然后点击检查
在这里插入图片描述
得到有关信息:
在这里插入图片描述
比如我在”Please select an organism type:“框中想选择"Plant”,那么我只要选择上图红框中表示输入是"plant"的框就行,然后再右键选择复制 “Xpath”
之后再将复制的Xpath粘贴到函数中,充当参数,如下所示:

 wuzhong_type = driver.find_element(By.XPATH, '//*[@id="content"]/form/table/tbody/tr[1]/td[1]/p[1]/input[2]')

因为在这个定位元素函数中,我第一个参数填的是“By.XPATH”,故后面那个参数就便是元素的“Xpath”。

3. 获取结果页面,提取出所需信息

请添加图片描述

对前面得到的URL列表(result_urls)进行循环遍历,并将得到的结果保存于指定文件中

4. 文件合并操作

请添加图片描述

前面得到的结果文件是通过循环得到的,故会是众多小文件。若是欲将所有的结果信息合并于一个大文件中,可以使用pandas库中的concat方法,来合并文件,最后将循环完毕后的合并结果,保存为一个csv文件。


总结

本章主要简述了python爬虫的有关信息,并且进行了一个实操(这个爬虫是基于WoLF PSORT官网,爬取亚细胞定位结果的数据)。更多有关蛋白质亚细胞定位的信息,请看

亚细胞定位

零落成泥碾作尘,只有香如故。

–2023-8-13 筑基篇

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/90179.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【无监督】2、MAE | 自监督模型提取的图像特征也很能打!(CVPR2022 Oral)

文章目录 一、背景二、方法三、效果 论文&#xff1a;Masked Autoencoders Are Scalable Vision Learners 代码&#xff1a;https://github.com/facebookresearch/mae 出处&#xff1a;CVPR2022 Oral | 何凯明 | FAIR 一、背景 本文的标题突出了两个词&#xff1a; masked…

【佳佳怪文献分享】安全人机交互的学习责任分配与自动驾驶应用

标题&#xff1a;Learning Responsibility Allocations for Safe Human-Robot Interaction with Applications to Autonomous Driving 作者&#xff1a;Ryan K. Cosner, Yuxiao Chen, Karen Leung, and Marco Pavone 来源&#xff1a;2023 IEEE International Conference on …

设备管理系统能起到什么作用?

在现代工业运营中&#xff0c;设备的高效管理和维护对于保障生产稳定运行和提升企业竞争力至关重要。而设备管理系统作为一种关键工具&#xff0c;能够极大地提高企业的生产效率和设备维护的准确性。本文将深入探讨设备管理系统的作用&#xff0c;以PreMaint设备数字化平台为例…

sealos安装k8s

一、前言 1、我前面文章有写过使用 kubeadm 安装的方式&#xff0c;大家可以去参考 &#xff08;二&#xff09;k8s集群安装&#xff0c;有一系列的k8s文章说明 2、安装k8s的方式有很多 kubeadmsealoskubespray等等 3、关于sealos来安装 k8s &#xff0c;也是非常建议大家去…

基于自适应曲线阈值和非局部稀疏正则化的压缩感知图像复原研究【自适应曲线阈值去除加性稳态白/有色高斯噪声】(Matlab代码实现)

&#x1f4a5;&#x1f4a5;&#x1f49e;&#x1f49e;欢迎来到本博客❤️❤️&#x1f4a5;&#x1f4a5; &#x1f3c6;博主优势&#xff1a;&#x1f31e;&#x1f31e;&#x1f31e;博客内容尽量做到思维缜密&#xff0c;逻辑清晰&#xff0c;为了方便读者。 ⛳️座右铭&a…

P450进阶款无人机室内定位功能研测

在以往的Prometheus 450&#xff08;P450&#xff09;无人机上&#xff0c;我们搭载的是Intel Realsense T265定位模块&#xff0c;使用USB连接方式挂载到机载计算机allspark上&#xff0c;通过机载上SDK驱动T265运行并输出SLAM信息&#xff0c;以此来实现室内定位功能。 为进…

SpringBoot复习:(45)@Component定义的bean会被@Bean定义的同名的bean覆盖

有同名的bean需要配置&#xff1a; spring.main.allow-bean-definition-overridingtrue 否则报错。 package cn.edu.tju.component;import org.springframework.stereotype.Component;Component public class Person {private String name;private int age;{this.name "…

C++ QT(一)

目录 初识QtQt 是什么Qt 能做什么Qt/C与QML 如何选择Qt 版本Windows 下安装QtLinux 下安装Qt安装Qt配置Qt Creator 输入中文配置Ubuntu 中文环境配置中文输入法 Qt Creator 简单使用Qt Creator 界面组成Qt Creator 设置 第一个Qt 程序新建一个项目项目文件介绍项目文件*.pro样式…

C++多态

文章目录 &#x1f435;1. 什么是多态&#x1f436;2. 构成多态的条件&#x1f429;2.1 虚函数&#x1f429;2.2 虚函数的重写&#x1f429;2.3 final 和 override关键字&#x1f429;2.4 重载、重写、重定义对比 &#x1f431;3. 虚函数表&#x1f42f;4. 多态的原理&#x1f…

深入探究QCheckBox的三种状态及其用法

文章目录 引言&#xff1a;三种状态一、未选中状态&#xff08;0&#xff09;&#xff1a;二、选中状态&#xff08;2&#xff09;&#xff1a;三、部分选中状态&#xff08;1&#xff09;&#xff1a; 判断方法结论&#xff1a; 引言&#xff1a; QCheckBox是Qt框架中常用的复…

分支语句与循环语句(2)

3.3 do...while()循环 3.3.1 do语句的语法&#xff1a; do 循环语句; while(表达式); 3.3.2执行流程图&#xff1a; 3.3.3 do语句的特点 循环至少执行一次&#xff0c;使用的场景有限&#xff0c;所以不是经常使用。 打印1-10的整数&#xff1a; #define _CRT_SECURE_NO_WA…

网页显示摄像头数据的方法---基于web video server

1. 背景&#xff1a; 在ros系统中有发布摄像头的相关驱动rgb数据&#xff0c;需求端需要将rgb数据可以直接在网页上去显示。 问题解决&#xff1a; web_video_server功能包&#xff0c;相关链接&#xff1a; web_video_server - ROS Wiki 2. 下载&#xff0c;安装和编译&a…

ios swift5 collectionView 瀑布流(两列)

文章目录 1.瀑布流1.1 demo地址1.2 记得把部署的最低版本由8改成11,13甚至更高。不然编译会报错 2.动态计算图片和文字的高度 1.瀑布流 1.1 demo地址 CollectionViewWaterfallLayout - github 1.2 记得把部署的最低版本由8改成11,13甚至更高。不然编译会报错 2.动态计算图片和…

【Android Framework系列】第10章 PMS之Hook实现广播的调用

1 前言 前面章节我们学习了【Android Framework系列】第4章 PMS原理我们了解了PMS原理&#xff0c;【Android Framework系列】第9章 AMS之Hook实现登录页跳转我们知道AMS可以Hook拦截下来实现未注册Activity页面的跳转&#xff0c;本章节我们来尝试一下HookPMS实现广播的发送。…

Stable Diffusion + Deform制作指南

1.安装sd以及deform插件,更新后记得重启 需要安装ffmpeg https://ffmpeg.org/download.html 选择对应版本然后安装 如果是windows需要解压后将ffmpeg的bin目录配置在电脑的环境变量里面。 2.准备一张初始开始图片 3.填写参数,这里面参数要注意,宽高一定是32的倍数。如果填写…

matplotlib绘制位置-时序甘特图

文章目录 1 前言2 知识点2.1 matplotlib.pyplot.barh2.2 matplotlib.legend的handles参数 3 代码实现4 绘制效果5 总结参考 1 前言 这篇文章的目的是&#xff0c;总结记录一次使用matplotlib绘制时序甘特图的经历。之所以要绘制这个时序甘特图&#xff0c;是因为22年数模研赛C…

电力能源管理系统在生物制药行业的应用

安科瑞 华楠 摘要&#xff1a;根据生物制品类企业的电力能源使用特点&#xff0c;制定了符合公司实际情况的能源管理系统&#xff0c;介绍了该系统的架构及其在企业的应用情况&#xff0c;提升了公司能源数据的实时监控能力&#xff0c;优化了公司能源分配&#xff0c;降低了公…

【数据结构】八大排序详解

&#x1f680; 作者简介&#xff1a;一名在后端领域学习&#xff0c;并渴望能够学有所成的追梦人。 &#x1f40c; 个人主页&#xff1a;蜗牛牛啊 &#x1f525; 系列专栏&#xff1a;&#x1f6f9;数据结构、&#x1f6f4;C &#x1f4d5; 学习格言&#xff1a;博观而约取&…

Python实现透明隧道爬虫ip:不影响现有网络结构

作为一名专业爬虫程序员&#xff0c;我们常常需要使用隧道代理来保护个人隐私和访问互联网资源。本文将分享如何使用Python实现透明隧道代理&#xff0c;以便在保护隐私的同时不影响现有网络结构。通过实际操作示例和专业的解析&#xff0c;我们将带您深入了解透明隧道代理的工…

物联网和不断发展的ITSM

物联网将改变社会&#xff0c;整个技术行业关于对机器连接都通过嵌入式传感器、软件和收集和交换数据的电子设备每天都在更新中。Gartner 预测&#xff0c;全球将有4亿台互联设备投入使用。 无论企业采用物联网的速度如何&#xff0c;连接设备都将成为新常态&#xff0c;IT服务…